ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x^{2}+10x=-13
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x^{2}+10x-\left(-13\right)=-13-\left(-13\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 13 ଯୋଡନ୍ତୁ.
x^{2}+10x-\left(-13\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -13 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
x^{2}+10x+13=0
0 ରୁ -13 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-10±\sqrt{10^{2}-4\times 13}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 10, ଏବଂ c ପାଇଁ 13 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-10±\sqrt{100-4\times 13}}{2}
ବର୍ଗ 10.
x=\frac{-10±\sqrt{100-52}}{2}
-4 କୁ 13 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-10±\sqrt{48}}{2}
100 କୁ -52 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-10±4\sqrt{3}}{2}
48 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4\sqrt{3}-10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-10±4\sqrt{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -10 କୁ 4\sqrt{3} ସହ ଯୋଡନ୍ତୁ.
x=2\sqrt{3}-5
-10+4\sqrt{3} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-4\sqrt{3}-10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-10±4\sqrt{3}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -10 ରୁ 4\sqrt{3} ବିୟୋଗ କରନ୍ତୁ.
x=-2\sqrt{3}-5
-10-4\sqrt{3} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=2\sqrt{3}-5 x=-2\sqrt{3}-5
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x^{2}+10x=-13
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+10x+5^{2}=-13+5^{2}
5 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 10 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 5 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+10x+25=-13+25
ବର୍ଗ 5.
x^{2}+10x+25=12
-13 କୁ 25 ସହ ଯୋଡନ୍ତୁ.
\left(x+5\right)^{2}=12
ଗୁଣନୀୟକ x^{2}+10x+25. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+5\right)^{2}}=\sqrt{12}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+5=2\sqrt{3} x+5=-2\sqrt{3}
ସରଳୀକୃତ କରିବା.
x=2\sqrt{3}-5 x=-2\sqrt{3}-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.