m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
m=-\frac{x^{2}-4x-9}{2x+1}
x\neq -\frac{1}{2}
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\sqrt{m^{2}-5m+13}-m+2
x=-\sqrt{m^{2}-5m+13}-m+2
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x^{2}+2mx-4x+m-9=0
2m-4 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2mx-4x+m-9=-x^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
2mx+m-9=-x^{2}+4x
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4x ଯୋଡନ୍ତୁ.
2mx+m=-x^{2}+4x+9
ଉଭୟ ପାର୍ଶ୍ଵକୁ 9 ଯୋଡନ୍ତୁ.
\left(2x+1\right)m=-x^{2}+4x+9
m ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(2x+1\right)m=9+4x-x^{2}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(2x+1\right)m}{2x+1}=\frac{9+4x-x^{2}}{2x+1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2x+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{9+4x-x^{2}}{2x+1}
2x+1 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2x+1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}