x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=1
x=5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2\left(x^{2}+\left(\frac{x+3}{2}\right)^{2}-8x-2\times \frac{x+3}{2}\right)+14=0
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
2\left(x^{2}+\frac{\left(x+3\right)^{2}}{2^{2}}-8x-2\times \frac{x+3}{2}\right)+14=0
\frac{x+3}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}}+\frac{\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{2}-8x କୁ \frac{2^{2}}{2^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
ଯେହେତୁ \frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}} ଏବଂ \frac{\left(x+3\right)^{2}}{2^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
2\left(\frac{4x^{2}-32x+x^{2}+6x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
4x^{2}-32x+x^{2}+6x+9ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\frac{2\left(x+3\right)}{2}\right)+14=0
2\times \frac{x+3}{2} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\left(x+3\right)\right)+14=0
2 ଏବଂ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-x-3\right)+14=0
x+3 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}+\frac{\left(-x-3\right)\times 2^{2}}{2^{2}}\right)+14=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. -x-3 କୁ \frac{2^{2}}{2^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
2\times \frac{5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}}{2^{2}}+14=0
ଯେହେତୁ \frac{5x^{2}-26x+9}{2^{2}} ଏବଂ \frac{\left(-x-3\right)\times 2^{2}}{2^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
2\times \frac{5x^{2}-26x+9-4x-12}{2^{2}}+14=0
5x^{2}-26x+9+\left(-x-3\right)\times 2^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
2\times \frac{5x^{2}-30x-3}{2^{2}}+14=0
5x^{2}-26x+9-4x-12ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{2\left(5x^{2}-30x-3\right)}{2^{2}}+14=0
2\times \frac{5x^{2}-30x-3}{2^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{5x^{2}-30x-3}{2}+14=0
ଉଭୟ ଲବ ଓ ହରରେ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{5}{2}x^{2}-15x-\frac{3}{2}+14=0
\frac{5}{2}x^{2}-15x-\frac{3}{2} ପ୍ରାପ୍ତ କରିବାକୁ 5x^{2}-30x-3 ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\frac{5}{2}x^{2}-15x+\frac{25}{2}=0
\frac{25}{2} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{3}{2} ଏବଂ 14 ଯୋଗ କରନ୍ତୁ.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times \frac{5}{2}\times \frac{25}{2}}}{2\times \frac{5}{2}}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ \frac{5}{2}, b ପାଇଁ -15, ଏବଂ c ପାଇଁ \frac{25}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-15\right)±\sqrt{225-4\times \frac{5}{2}\times \frac{25}{2}}}{2\times \frac{5}{2}}
ବର୍ଗ -15.
x=\frac{-\left(-15\right)±\sqrt{225-10\times \frac{25}{2}}}{2\times \frac{5}{2}}
-4 କୁ \frac{5}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-15\right)±\sqrt{225-125}}{2\times \frac{5}{2}}
-10 କୁ \frac{25}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-15\right)±\sqrt{100}}{2\times \frac{5}{2}}
225 କୁ -125 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-15\right)±10}{2\times \frac{5}{2}}
100 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{15±10}{2\times \frac{5}{2}}
-15 ର ବିପରୀତ ହେଉଛି 15.
x=\frac{15±10}{5}
2 କୁ \frac{5}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{25}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{15±10}{5} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 15 କୁ 10 ସହ ଯୋଡନ୍ତୁ.
x=5
25 କୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{5}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{15±10}{5} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 15 ରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
x=1
5 କୁ 5 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=5 x=1
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2\left(x^{2}+\left(\frac{x+3}{2}\right)^{2}-8x-2\times \frac{x+3}{2}\right)+14=0
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
2\left(x^{2}+\frac{\left(x+3\right)^{2}}{2^{2}}-8x-2\times \frac{x+3}{2}\right)+14=0
\frac{x+3}{2} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}}+\frac{\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x^{2}-8x କୁ \frac{2^{2}}{2^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
2\left(\frac{\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2}}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
ଯେହେତୁ \frac{\left(x^{2}-8x\right)\times 2^{2}}{2^{2}} ଏବଂ \frac{\left(x+3\right)^{2}}{2^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
2\left(\frac{4x^{2}-32x+x^{2}+6x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
\left(x^{2}-8x\right)\times 2^{2}+\left(x+3\right)^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-2\times \frac{x+3}{2}\right)+14=0
4x^{2}-32x+x^{2}+6x+9ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\frac{2\left(x+3\right)}{2}\right)+14=0
2\times \frac{x+3}{2} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-\left(x+3\right)\right)+14=0
2 ଏବଂ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}-x-3\right)+14=0
x+3 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
2\left(\frac{5x^{2}-26x+9}{2^{2}}+\frac{\left(-x-3\right)\times 2^{2}}{2^{2}}\right)+14=0
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. -x-3 କୁ \frac{2^{2}}{2^{2}} ଥର ଗୁଣନ କରନ୍ତୁ.
2\times \frac{5x^{2}-26x+9+\left(-x-3\right)\times 2^{2}}{2^{2}}+14=0
ଯେହେତୁ \frac{5x^{2}-26x+9}{2^{2}} ଏବଂ \frac{\left(-x-3\right)\times 2^{2}}{2^{2}} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
2\times \frac{5x^{2}-26x+9-4x-12}{2^{2}}+14=0
5x^{2}-26x+9+\left(-x-3\right)\times 2^{2} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
2\times \frac{5x^{2}-30x-3}{2^{2}}+14=0
5x^{2}-26x+9-4x-12ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{2\left(5x^{2}-30x-3\right)}{2^{2}}+14=0
2\times \frac{5x^{2}-30x-3}{2^{2}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{5x^{2}-30x-3}{2}+14=0
ଉଭୟ ଲବ ଓ ହରରେ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{5}{2}x^{2}-15x-\frac{3}{2}+14=0
\frac{5}{2}x^{2}-15x-\frac{3}{2} ପ୍ରାପ୍ତ କରିବାକୁ 5x^{2}-30x-3 ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
\frac{5}{2}x^{2}-15x+\frac{25}{2}=0
\frac{25}{2} ପ୍ରାପ୍ତ କରିବାକୁ -\frac{3}{2} ଏବଂ 14 ଯୋଗ କରନ୍ତୁ.
\frac{5}{2}x^{2}-15x=-\frac{25}{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{25}{2} ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{\frac{5}{2}x^{2}-15x}{\frac{5}{2}}=-\frac{\frac{25}{2}}{\frac{5}{2}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{5}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x^{2}+\left(-\frac{15}{\frac{5}{2}}\right)x=-\frac{\frac{25}{2}}{\frac{5}{2}}
\frac{5}{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା \frac{5}{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-6x=-\frac{\frac{25}{2}}{\frac{5}{2}}
\frac{5}{2} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା -15 କୁ ଗୁଣନ କରି -15 କୁ \frac{5}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-6x=-5
\frac{5}{2} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା -\frac{25}{2} କୁ ଗୁଣନ କରି -\frac{25}{2} କୁ \frac{5}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-6x+\left(-3\right)^{2}=-5+\left(-3\right)^{2}
-3 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -6 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -3 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-6x+9=-5+9
ବର୍ଗ -3.
x^{2}-6x+9=4
-5 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
\left(x-3\right)^{2}=4
ଗୁଣନୀୟକ x^{2}-6x+9. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-3\right)^{2}}=\sqrt{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-3=2 x-3=-2
ସରଳୀକୃତ କରିବା.
x=5 x=1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}