ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

xx+1=100x
ଭାରିଏବୁଲ୍‌ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x^{2}+1=100x
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
x^{2}+1-100x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 100x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-100x+1=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -100, ଏବଂ c ପାଇଁ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-100\right)±\sqrt{10000-4}}{2}
ବର୍ଗ -100.
x=\frac{-\left(-100\right)±\sqrt{9996}}{2}
10000 କୁ -4 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-100\right)±14\sqrt{51}}{2}
9996 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{100±14\sqrt{51}}{2}
-100 ର ବିପରୀତ ହେଉଛି 100.
x=\frac{14\sqrt{51}+100}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{100±14\sqrt{51}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 100 କୁ 14\sqrt{51} ସହ ଯୋଡନ୍ତୁ.
x=7\sqrt{51}+50
100+14\sqrt{51} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{100-14\sqrt{51}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{100±14\sqrt{51}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 100 ରୁ 14\sqrt{51} ବିୟୋଗ କରନ୍ତୁ.
x=50-7\sqrt{51}
100-14\sqrt{51} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=7\sqrt{51}+50 x=50-7\sqrt{51}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
xx+1=100x
ଭାରିଏବୁଲ୍‌ x 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x^{2}+1=100x
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
x^{2}+1-100x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 100x ବିୟୋଗ କରନ୍ତୁ.
x^{2}-100x=-1
ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
x^{2}-100x+\left(-50\right)^{2}=-1+\left(-50\right)^{2}
-50 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -100 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -50 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-100x+2500=-1+2500
ବର୍ଗ -50.
x^{2}-100x+2500=2499
-1 କୁ 2500 ସହ ଯୋଡନ୍ତୁ.
\left(x-50\right)^{2}=2499
ଗୁଣନୀୟକ x^{2}-100x+2500. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-50\right)^{2}}=\sqrt{2499}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-50=7\sqrt{51} x-50=-7\sqrt{51}
ସରଳୀକୃତ କରିବା.
x=7\sqrt{51}+50 x=50-7\sqrt{51}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 50 ଯୋଡନ୍ତୁ.