ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
w ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-4 ab=-32
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର w^{2}+\left(a+b\right)w+ab=\left(w+a\right)\left(w+b\right) ବ୍ୟବହାର କରି w^{2}-4w-32 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-32 2,-16 4,-8
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -32 ପ୍ରଦାନ କରିଥାଏ.
1-32=-31 2-16=-14 4-8=-4
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-8 b=4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -4 ପ୍ରଦାନ କରିଥାଏ.
\left(w-8\right)\left(w+4\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(w+a\right)\left(w+b\right) ପୁନଃଲେଖନ୍ତୁ.
w=8 w=-4
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, w-8=0 ଏବଂ w+4=0 ସମାଧାନ କରନ୍ତୁ.
a+b=-4 ab=1\left(-32\right)=-32
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ w^{2}+aw+bw-32 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-32 2,-16 4,-8
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -32 ପ୍ରଦାନ କରିଥାଏ.
1-32=-31 2-16=-14 4-8=-4
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-8 b=4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -4 ପ୍ରଦାନ କରିଥାଏ.
\left(w^{2}-8w\right)+\left(4w-32\right)
\left(w^{2}-8w\right)+\left(4w-32\right) ଭାବରେ w^{2}-4w-32 ପୁନଃ ଲେଖନ୍ତୁ.
w\left(w-8\right)+4\left(w-8\right)
ପ୍ରଥମଟିରେ w ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(w-8\right)\left(w+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ w-8 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
w=8 w=-4
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, w-8=0 ଏବଂ w+4=0 ସମାଧାନ କରନ୍ତୁ.
w^{2}-4w-32=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
w=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-32\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -32 ପ୍ରତିବଦଳ କରନ୍ତୁ.
w=\frac{-\left(-4\right)±\sqrt{16-4\left(-32\right)}}{2}
ବର୍ଗ -4.
w=\frac{-\left(-4\right)±\sqrt{16+128}}{2}
-4 କୁ -32 ଥର ଗୁଣନ କରନ୍ତୁ.
w=\frac{-\left(-4\right)±\sqrt{144}}{2}
16 କୁ 128 ସହ ଯୋଡନ୍ତୁ.
w=\frac{-\left(-4\right)±12}{2}
144 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
w=\frac{4±12}{2}
-4 ର ବିପରୀତ ହେଉଛି 4.
w=\frac{16}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ w=\frac{4±12}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 12 ସହ ଯୋଡନ୍ତୁ.
w=8
16 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
w=-\frac{8}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ w=\frac{4±12}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
w=-4
-8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
w=8 w=-4
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
w^{2}-4w-32=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
w^{2}-4w-32-\left(-32\right)=-\left(-32\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 32 ଯୋଡନ୍ତୁ.
w^{2}-4w=-\left(-32\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -32 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
w^{2}-4w=32
0 ରୁ -32 ବିୟୋଗ କରନ୍ତୁ.
w^{2}-4w+\left(-2\right)^{2}=32+\left(-2\right)^{2}
-2 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -4 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -2 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
w^{2}-4w+4=32+4
ବର୍ଗ -2.
w^{2}-4w+4=36
32 କୁ 4 ସହ ଯୋଡନ୍ତୁ.
\left(w-2\right)^{2}=36
ଗୁଣନୀୟକ w^{2}-4w+4. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(w-2\right)^{2}}=\sqrt{36}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
w-2=6 w-2=-6
ସରଳୀକୃତ କରିବା.
w=8 w=-4
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.