ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
v ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

v^{2}-7v-9=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
v=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-9\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -7, ଏବଂ c ପାଇଁ -9 ପ୍ରତିବଦଳ କରନ୍ତୁ.
v=\frac{-\left(-7\right)±\sqrt{49-4\left(-9\right)}}{2}
ବର୍ଗ -7.
v=\frac{-\left(-7\right)±\sqrt{49+36}}{2}
-4 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
v=\frac{-\left(-7\right)±\sqrt{85}}{2}
49 କୁ 36 ସହ ଯୋଡନ୍ତୁ.
v=\frac{7±\sqrt{85}}{2}
-7 ର ବିପରୀତ ହେଉଛି 7.
v=\frac{\sqrt{85}+7}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ v=\frac{7±\sqrt{85}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 7 କୁ \sqrt{85} ସହ ଯୋଡନ୍ତୁ.
v=\frac{7-\sqrt{85}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ v=\frac{7±\sqrt{85}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 7 ରୁ \sqrt{85} ବିୟୋଗ କରନ୍ତୁ.
v=\frac{\sqrt{85}+7}{2} v=\frac{7-\sqrt{85}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
v^{2}-7v-9=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
v^{2}-7v-9-\left(-9\right)=-\left(-9\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 9 ଯୋଡନ୍ତୁ.
v^{2}-7v=-\left(-9\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -9 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
v^{2}-7v=9
0 ରୁ -9 ବିୟୋଗ କରନ୍ତୁ.
v^{2}-7v+\left(-\frac{7}{2}\right)^{2}=9+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
v^{2}-7v+\frac{49}{4}=9+\frac{49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
v^{2}-7v+\frac{49}{4}=\frac{85}{4}
9 କୁ \frac{49}{4} ସହ ଯୋଡନ୍ତୁ.
\left(v-\frac{7}{2}\right)^{2}=\frac{85}{4}
ଗୁଣନୀୟକ v^{2}-7v+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(v-\frac{7}{2}\right)^{2}}=\sqrt{\frac{85}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
v-\frac{7}{2}=\frac{\sqrt{85}}{2} v-\frac{7}{2}=-\frac{\sqrt{85}}{2}
ସରଳୀକୃତ କରିବା.
v=\frac{\sqrt{85}+7}{2} v=\frac{7-\sqrt{85}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ଯୋଡନ୍ତୁ.