ଗୁଣକ
\left(v-13\right)^{2}
ମୂଲ୍ୟାୟନ କରିବା
\left(v-13\right)^{2}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=-26 ab=1\times 169=169
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି v^{2}+av+bv+169 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-169 -13,-13
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 169 ପ୍ରଦାନ କରିଥାଏ.
-1-169=-170 -13-13=-26
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-13 b=-13
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -26 ପ୍ରଦାନ କରିଥାଏ.
\left(v^{2}-13v\right)+\left(-13v+169\right)
\left(v^{2}-13v\right)+\left(-13v+169\right) ଭାବରେ v^{2}-26v+169 ପୁନଃ ଲେଖନ୍ତୁ.
v\left(v-13\right)-13\left(v-13\right)
ପ୍ରଥମଟିରେ v ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -13 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(v-13\right)\left(v-13\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ v-13 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(v-13\right)^{2}
ବାଇନମିଆଲ୍ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
factor(v^{2}-26v+169)
ଏହି ଟ୍ରାଇନମିଆଲ୍ର ଏକ ଟ୍ରାଇନମିଆଲ୍ ବର୍ଗର ରୂପ ରହିଛି, ସମ୍ଭବତଃ ଏକ ସାଧାରଣ ଗୁଣନୀୟକ ଦ୍ୱାରା ଗୁଣିତ ହୋଇଥାଏ. ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକର ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କରିବା ଦ୍ୱାରା ଟ୍ରାଇନମିଆଲ୍ ବର୍ଗଗୁଡିକୁ ଗୁଣନୀୟକଯୁକ୍ତ କରାଯାଇପାରିବ.
\sqrt{169}=13
ଅନୁଗାମୀ ପଦ, 169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\left(v-13\right)^{2}
ଟ୍ରାଇନମିଆଲ୍ ବର୍ଗ ହେଉଛି ବାଇନମିଆଲ୍ର ବର୍ଗ ଯାହା ହେଉଛି ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକ ବର୍ଗମୂଳର ପାର୍ଥକ୍ୟ କିମ୍ବା ସମଷ୍ଟି, ଟ୍ରାଇନମିଆଲ୍ ବର୍ଗର ମଧ୍ୟମ ପଦର ଚିହ୍ନ ଦ୍ୱାରା ନିର୍ଦ୍ଧାରିତ ଚିହ୍ନ ସହିତ.
v^{2}-26v+169=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
v=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 169}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
v=\frac{-\left(-26\right)±\sqrt{676-4\times 169}}{2}
ବର୍ଗ -26.
v=\frac{-\left(-26\right)±\sqrt{676-676}}{2}
-4 କୁ 169 ଥର ଗୁଣନ କରନ୍ତୁ.
v=\frac{-\left(-26\right)±\sqrt{0}}{2}
676 କୁ -676 ସହ ଯୋଡନ୍ତୁ.
v=\frac{-\left(-26\right)±0}{2}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
v=\frac{26±0}{2}
-26 ର ବିପରୀତ ହେଉଛି 26.
v^{2}-26v+169=\left(v-13\right)\left(v-13\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 13 ଏବଂ x_{2} ପାଇଁ 13 ପ୍ରତିବଦଳ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}