t_2 ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
t_{2}=\frac{\ln(\frac{x_{m}-x_{0}}{x_{0}})+0.31}{\gamma _{0}}
\gamma _{0}\neq 0\text{ and }x_{m}\neq x_{0}\text{ and }x_{0}\neq 0
x_0 ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}\\x_{0}\neq 0\text{, }&\text{unconditionally}\\x_{0}=\frac{x_{m}}{e^{t_{2}\gamma _{0}-0.31}+1}\text{, }&x_{m}\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }t_{2}=\frac{2\pi n_{1}i}{\gamma _{0}}+\frac{0.31+\pi i}{\gamma _{0}}\text{ and }Im(\ln(e^{t_{2}\gamma _{0}-0.31}))-Re(t_{2})Im(\gamma _{0})-Re(\gamma _{0})Im(t_{2})=0\text{ and }\gamma _{0}\neq 0\end{matrix}\right.
t_2 ପାଇଁ ସମାଧାନ କରନ୍ତୁ
t_{2}=\frac{\ln(\frac{x_{m}-x_{0}}{x_{0}})+0.31}{\gamma _{0}}
\left(\gamma _{0}\neq 0\text{ and }x_{m}<x_{0}\text{ and }x_{0}<0\right)\text{ or }\left(\gamma _{0}\neq 0\text{ and }x_{m}>x_{0}\text{ and }x_{0}>0\right)
x_0 ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x_{0}=\frac{x_{m}}{e^{t_{2}\gamma _{0}-0.31}+1}
\gamma _{0}\neq 0\text{ and }x_{m}\neq 0
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}