ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=16 ab=1\left(-17\right)=-17
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି t^{2}+at+bt-17 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
a=-1 b=17
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. କେବଳ ଏହିଭଳି ଯୋଡା ହେଉଛି ସିଷ୍ଟମ୍‌ ସମାଧାନ.
\left(t^{2}-t\right)+\left(17t-17\right)
\left(t^{2}-t\right)+\left(17t-17\right) ଭାବରେ t^{2}+16t-17 ପୁନଃ ଲେଖନ୍ତୁ.
t\left(t-1\right)+17\left(t-1\right)
ପ୍ରଥମଟିରେ t ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 17 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(t-1\right)\left(t+17\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ t-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
t^{2}+16t-17=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
t=\frac{-16±\sqrt{16^{2}-4\left(-17\right)}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-16±\sqrt{256-4\left(-17\right)}}{2}
ବର୍ଗ 16.
t=\frac{-16±\sqrt{256+68}}{2}
-4 କୁ -17 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-16±\sqrt{324}}{2}
256 କୁ 68 ସହ ଯୋଡନ୍ତୁ.
t=\frac{-16±18}{2}
324 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
t=\frac{2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-16±18}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -16 କୁ 18 ସହ ଯୋଡନ୍ତୁ.
t=1
2 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t=-\frac{34}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{-16±18}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -16 ରୁ 18 ବିୟୋଗ କରନ୍ତୁ.
t=-17
-34 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}+16t-17=\left(t-1\right)\left(t-\left(-17\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 1 ଏବଂ x_{2} ପାଇଁ -17 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t^{2}+16t-17=\left(t-1\right)\left(t+17\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.