ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
s ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-5 ab=-50
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର s^{2}+\left(a+b\right)s+ab=\left(s+a\right)\left(s+b\right) ବ୍ୟବହାର କରି s^{2}-5s-50 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-50 2,-25 5,-10
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -50 ପ୍ରଦାନ କରିଥାଏ.
1-50=-49 2-25=-23 5-10=-5
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-10 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(s-10\right)\left(s+5\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(s+a\right)\left(s+b\right) ପୁନଃଲେଖନ୍ତୁ.
s=10 s=-5
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, s-10=0 ଏବଂ s+5=0 ସମାଧାନ କରନ୍ତୁ.
a+b=-5 ab=1\left(-50\right)=-50
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ s^{2}+as+bs-50 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-50 2,-25 5,-10
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -50 ପ୍ରଦାନ କରିଥାଏ.
1-50=-49 2-25=-23 5-10=-5
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-10 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(s^{2}-10s\right)+\left(5s-50\right)
\left(s^{2}-10s\right)+\left(5s-50\right) ଭାବରେ s^{2}-5s-50 ପୁନଃ ଲେଖନ୍ତୁ.
s\left(s-10\right)+5\left(s-10\right)
ପ୍ରଥମଟିରେ s ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(s-10\right)\left(s+5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ s-10 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
s=10 s=-5
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, s-10=0 ଏବଂ s+5=0 ସମାଧାନ କରନ୍ତୁ.
s^{2}-5s-50=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
s=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-50\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -5, ଏବଂ c ପାଇଁ -50 ପ୍ରତିବଦଳ କରନ୍ତୁ.
s=\frac{-\left(-5\right)±\sqrt{25-4\left(-50\right)}}{2}
ବର୍ଗ -5.
s=\frac{-\left(-5\right)±\sqrt{25+200}}{2}
-4 କୁ -50 ଥର ଗୁଣନ କରନ୍ତୁ.
s=\frac{-\left(-5\right)±\sqrt{225}}{2}
25 କୁ 200 ସହ ଯୋଡନ୍ତୁ.
s=\frac{-\left(-5\right)±15}{2}
225 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
s=\frac{5±15}{2}
-5 ର ବିପରୀତ ହେଉଛି 5.
s=\frac{20}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ s=\frac{5±15}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ 15 ସହ ଯୋଡନ୍ତୁ.
s=10
20 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
s=-\frac{10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ s=\frac{5±15}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ 15 ବିୟୋଗ କରନ୍ତୁ.
s=-5
-10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
s=10 s=-5
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
s^{2}-5s-50=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
s^{2}-5s-50-\left(-50\right)=-\left(-50\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 50 ଯୋଡନ୍ତୁ.
s^{2}-5s=-\left(-50\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -50 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
s^{2}-5s=50
0 ରୁ -50 ବିୟୋଗ କରନ୍ତୁ.
s^{2}-5s+\left(-\frac{5}{2}\right)^{2}=50+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
s^{2}-5s+\frac{25}{4}=50+\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
s^{2}-5s+\frac{25}{4}=\frac{225}{4}
50 କୁ \frac{25}{4} ସହ ଯୋଡନ୍ତୁ.
\left(s-\frac{5}{2}\right)^{2}=\frac{225}{4}
ଗୁଣନୀୟକ s^{2}-5s+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(s-\frac{5}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
s-\frac{5}{2}=\frac{15}{2} s-\frac{5}{2}=-\frac{15}{2}
ସରଳୀକୃତ କରିବା.
s=10 s=-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ଯୋଡନ୍ତୁ.