ଗୁଣକ
n\left(n-2\right)\left(n-1\right)\left(n+1\right)\left(n+2\right)
ମୂଲ୍ୟାୟନ କରିବା
n\left(n^{4}-5n^{2}+4\right)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
n\left(n^{4}-5n^{2}+4\right)
n ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(n^{2}-4\right)\left(n^{2}-1\right)
n^{4}-5n^{2}+4କୁ ବିବେଚନା କରନ୍ତୁ. ଗୁଣନୀୟକକୁ n^{k}+m, ରୂପରେ ପାଆନ୍ତୁ, ଯେଉଁଠାରେ n^{k} ମୋନୋମିଆଲକୁ ଉଚ୍ଚତମ ଘାତ n^{4} ସହିତ ବିଭିକ୍ତ କରିଥାଏ ଏବଂ 4 କନଷ୍ଟାଣ୍ଟ ଫ୍ୟାକ୍ଟର ବା ସ୍ଥିରାଙ୍କ ଗୁଣନୀୟକକୁ mବିଭକ୍ତ କରିଥାଏ. ଏହିଭଳି ଏକ ଗୁଣନୀୟକ ହେଉଛି n^{2}-4. ଏହି ଗୁଣନୀୟକ ଦ୍ୱାରା ବିଭାଜନ କରି ପଲିନୋମିଆଲକୁ ଫ୍ୟାକ୍ଟର କରନ୍ତୁ.
\left(n-2\right)\left(n+2\right)
n^{2}-4କୁ ବିବେଚନା କରନ୍ତୁ. n^{2}-2^{2} ଭାବରେ n^{2}-4 ପୁନଃ ଲେଖନ୍ତୁ. ବର୍ଗଗୁଡ଼ିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ ଏହି ନିୟମ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟର କରାଯାଇପାରିବ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(n-1\right)\left(n+1\right)
n^{2}-1କୁ ବିବେଚନା କରନ୍ତୁ. n^{2}-1^{2} ଭାବରେ n^{2}-1 ପୁନଃ ଲେଖନ୍ତୁ. ବର୍ଗଗୁଡ଼ିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ ଏହି ନିୟମ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟର କରାଯାଇପାରିବ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
n\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}