ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-1 ab=-210
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right) ବ୍ୟବହାର କରି n^{2}-n-210 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -210 ପ୍ରଦାନ କରିଥାଏ.
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-15 b=14
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -1 ପ୍ରଦାନ କରିଥାଏ.
\left(n-15\right)\left(n+14\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(n+a\right)\left(n+b\right) ପୁନଃଲେଖନ୍ତୁ.
n=15 n=-14
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, n-15=0 ଏବଂ n+14=0 ସମାଧାନ କରନ୍ତୁ.
a+b=-1 ab=1\left(-210\right)=-210
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ n^{2}+an+bn-210 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-210 2,-105 3,-70 5,-42 6,-35 7,-30 10,-21 14,-15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -210 ପ୍ରଦାନ କରିଥାଏ.
1-210=-209 2-105=-103 3-70=-67 5-42=-37 6-35=-29 7-30=-23 10-21=-11 14-15=-1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-15 b=14
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -1 ପ୍ରଦାନ କରିଥାଏ.
\left(n^{2}-15n\right)+\left(14n-210\right)
\left(n^{2}-15n\right)+\left(14n-210\right) ଭାବରେ n^{2}-n-210 ପୁନଃ ଲେଖନ୍ତୁ.
n\left(n-15\right)+14\left(n-15\right)
ପ୍ରଥମଟିରେ n ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 14 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(n-15\right)\left(n+14\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ n-15 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
n=15 n=-14
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, n-15=0 ଏବଂ n+14=0 ସମାଧାନ କରନ୍ତୁ.
n^{2}-n-210=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
n=\frac{-\left(-1\right)±\sqrt{1-4\left(-210\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -1, ଏବଂ c ପାଇଁ -210 ପ୍ରତିବଦଳ କରନ୍ତୁ.
n=\frac{-\left(-1\right)±\sqrt{1+840}}{2}
-4 କୁ -210 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-1\right)±\sqrt{841}}{2}
1 କୁ 840 ସହ ଯୋଡନ୍ତୁ.
n=\frac{-\left(-1\right)±29}{2}
841 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
n=\frac{1±29}{2}
-1 ର ବିପରୀତ ହେଉଛି 1.
n=\frac{30}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{1±29}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1 କୁ 29 ସହ ଯୋଡନ୍ତୁ.
n=15
30 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=-\frac{28}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{1±29}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1 ରୁ 29 ବିୟୋଗ କରନ୍ତୁ.
n=-14
-28 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=15 n=-14
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
n^{2}-n-210=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
n^{2}-n-210-\left(-210\right)=-\left(-210\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 210 ଯୋଡନ୍ତୁ.
n^{2}-n=-\left(-210\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -210 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
n^{2}-n=210
0 ରୁ -210 ବିୟୋଗ କରନ୍ତୁ.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=210+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
n^{2}-n+\frac{1}{4}=210+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
n^{2}-n+\frac{1}{4}=\frac{841}{4}
210 କୁ \frac{1}{4} ସହ ଯୋଡନ୍ତୁ.
\left(n-\frac{1}{2}\right)^{2}=\frac{841}{4}
ଗୁଣନୀୟକ n^{2}-n+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{841}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
n-\frac{1}{2}=\frac{29}{2} n-\frac{1}{2}=-\frac{29}{2}
ସରଳୀକୃତ କରିବା.
n=15 n=-14
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ଯୋଡନ୍ତୁ.