m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
m=-2
m=18
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=-16 ab=-36
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର m^{2}+\left(a+b\right)m+ab=\left(m+a\right)\left(m+b\right) ବ୍ୟବହାର କରି m^{2}-16m-36 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-36 2,-18 3,-12 4,-9 6,-6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -36 ପ୍ରଦାନ କରିଥାଏ.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-18 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -16 ପ୍ରଦାନ କରିଥାଏ.
\left(m-18\right)\left(m+2\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(m+a\right)\left(m+b\right) ପୁନଃଲେଖନ୍ତୁ.
m=18 m=-2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, m-18=0 ଏବଂ m+2=0 ସମାଧାନ କରନ୍ତୁ.
a+b=-16 ab=1\left(-36\right)=-36
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ m^{2}+am+bm-36 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-36 2,-18 3,-12 4,-9 6,-6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -36 ପ୍ରଦାନ କରିଥାଏ.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-18 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -16 ପ୍ରଦାନ କରିଥାଏ.
\left(m^{2}-18m\right)+\left(2m-36\right)
\left(m^{2}-18m\right)+\left(2m-36\right) ଭାବରେ m^{2}-16m-36 ପୁନଃ ଲେଖନ୍ତୁ.
m\left(m-18\right)+2\left(m-18\right)
ପ୍ରଥମଟିରେ m ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(m-18\right)\left(m+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ m-18 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
m=18 m=-2
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, m-18=0 ଏବଂ m+2=0 ସମାଧାନ କରନ୍ତୁ.
m^{2}-16m-36=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
m=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\left(-36\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -16, ଏବଂ c ପାଇଁ -36 ପ୍ରତିବଦଳ କରନ୍ତୁ.
m=\frac{-\left(-16\right)±\sqrt{256-4\left(-36\right)}}{2}
ବର୍ଗ -16.
m=\frac{-\left(-16\right)±\sqrt{256+144}}{2}
-4 କୁ -36 ଥର ଗୁଣନ କରନ୍ତୁ.
m=\frac{-\left(-16\right)±\sqrt{400}}{2}
256 କୁ 144 ସହ ଯୋଡନ୍ତୁ.
m=\frac{-\left(-16\right)±20}{2}
400 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
m=\frac{16±20}{2}
-16 ର ବିପରୀତ ହେଉଛି 16.
m=\frac{36}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ m=\frac{16±20}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 16 କୁ 20 ସହ ଯୋଡନ୍ତୁ.
m=18
36 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=-\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ m=\frac{16±20}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 16 ରୁ 20 ବିୟୋଗ କରନ୍ତୁ.
m=-2
-4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=18 m=-2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
m^{2}-16m-36=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
m^{2}-16m-36-\left(-36\right)=-\left(-36\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 36 ଯୋଡନ୍ତୁ.
m^{2}-16m=-\left(-36\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -36 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
m^{2}-16m=36
0 ରୁ -36 ବିୟୋଗ କରନ୍ତୁ.
m^{2}-16m+\left(-8\right)^{2}=36+\left(-8\right)^{2}
-8 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -16 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -8 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
m^{2}-16m+64=36+64
ବର୍ଗ -8.
m^{2}-16m+64=100
36 କୁ 64 ସହ ଯୋଡନ୍ତୁ.
\left(m-8\right)^{2}=100
ଗୁଣନୀୟକ m^{2}-16m+64. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(m-8\right)^{2}}=\sqrt{100}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
m-8=10 m-8=-10
ସରଳୀକୃତ କରିବା.
m=18 m=-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 8 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}