ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-3 ab=1\left(-28\right)=-28
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି k^{2}+ak+bk-28 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-28 2,-14 4,-7
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -28 ପ୍ରଦାନ କରିଥାଏ.
1-28=-27 2-14=-12 4-7=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-7 b=4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -3 ପ୍ରଦାନ କରିଥାଏ.
\left(k^{2}-7k\right)+\left(4k-28\right)
\left(k^{2}-7k\right)+\left(4k-28\right) ଭାବରେ k^{2}-3k-28 ପୁନଃ ଲେଖନ୍ତୁ.
k\left(k-7\right)+4\left(k-7\right)
ପ୍ରଥମଟିରେ k ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(k-7\right)\left(k+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ k-7 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
k^{2}-3k-28=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
k=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-28\right)}}{2}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
k=\frac{-\left(-3\right)±\sqrt{9-4\left(-28\right)}}{2}
ବର୍ଗ -3.
k=\frac{-\left(-3\right)±\sqrt{9+112}}{2}
-4 କୁ -28 ଥର ଗୁଣନ କରନ୍ତୁ.
k=\frac{-\left(-3\right)±\sqrt{121}}{2}
9 କୁ 112 ସହ ଯୋଡନ୍ତୁ.
k=\frac{-\left(-3\right)±11}{2}
121 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
k=\frac{3±11}{2}
-3 ର ବିପରୀତ ହେଉଛି 3.
k=\frac{14}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ k=\frac{3±11}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 3 କୁ 11 ସହ ଯୋଡନ୍ତୁ.
k=7
14 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=-\frac{8}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ k=\frac{3±11}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 3 ରୁ 11 ବିୟୋଗ କରନ୍ତୁ.
k=-4
-8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k^{2}-3k-28=\left(k-7\right)\left(k-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 7 ଏବଂ x_{2} ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
k^{2}-3k-28=\left(k-7\right)\left(k+4\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.