ଗୁଣକ
10\left(1-p\right)\left(6p+1\right)
ମୂଲ୍ୟାୟନ କରିବା
10+50p-60p^{2}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
10\left(-6p^{2}+5p+1\right)
10 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a+b=5 ab=-6=-6
-6p^{2}+5p+1କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି -6p^{2}+ap+bp+1 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,6 -2,3
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -6 ପ୍ରଦାନ କରିଥାଏ.
-1+6=5 -2+3=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=6 b=-1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 5 ପ୍ରଦାନ କରିଥାଏ.
\left(-6p^{2}+6p\right)+\left(-p+1\right)
\left(-6p^{2}+6p\right)+\left(-p+1\right) ଭାବରେ -6p^{2}+5p+1 ପୁନଃ ଲେଖନ୍ତୁ.
6p\left(-p+1\right)-p+1
-6p^{2}+6pରେ 6p ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-p+1\right)\left(6p+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -p+1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
10\left(-p+1\right)\left(6p+1\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
-60p^{2}+50p+10=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
p=\frac{-50±\sqrt{50^{2}-4\left(-60\right)\times 10}}{2\left(-60\right)}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
p=\frac{-50±\sqrt{2500-4\left(-60\right)\times 10}}{2\left(-60\right)}
ବର୍ଗ 50.
p=\frac{-50±\sqrt{2500+240\times 10}}{2\left(-60\right)}
-4 କୁ -60 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-50±\sqrt{2500+2400}}{2\left(-60\right)}
240 କୁ 10 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-50±\sqrt{4900}}{2\left(-60\right)}
2500 କୁ 2400 ସହ ଯୋଡନ୍ତୁ.
p=\frac{-50±70}{2\left(-60\right)}
4900 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
p=\frac{-50±70}{-120}
2 କୁ -60 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{20}{-120}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{-50±70}{-120} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -50 କୁ 70 ସହ ଯୋଡନ୍ତୁ.
p=-\frac{1}{6}
20 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{20}{-120} ହ୍ରାସ କରନ୍ତୁ.
p=-\frac{120}{-120}
ବର୍ତ୍ତମାନ ସମୀକରଣ p=\frac{-50±70}{-120} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -50 ରୁ 70 ବିୟୋଗ କରନ୍ତୁ.
p=1
-120 କୁ -120 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
-60p^{2}+50p+10=-60\left(p-\left(-\frac{1}{6}\right)\right)\left(p-1\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -\frac{1}{6} ଏବଂ x_{2} ପାଇଁ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-60p^{2}+50p+10=-60\left(p+\frac{1}{6}\right)\left(p-1\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
-60p^{2}+50p+10=-60\times \frac{-6p-1}{-6}\left(p-1\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା p ସହିତ \frac{1}{6} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
-60p^{2}+50p+10=10\left(-6p-1\right)\left(p-1\right)
-60 ଏବଂ 6 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 6 ବାତିଲ୍ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}