ଗୁଣକ
\left(x-3\right)\left(x-2\right)\left(3x+2\right)
ମୂଲ୍ୟାୟନ କରିବା
\left(x-3\right)\left(x-2\right)\left(3x+2\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(x-2\right)\left(3x^{2}-7x-6\right)
ପରିମେୟ ମୂଳ ଉପପାଦ୍ୟ ଦ୍ୱାରା, ଏକ ପଲିନୋମିଆଲର ସମସ୍ତ ରେସନାଲ ରୁଟ୍ଗୁଡିକ\frac{p}{q} ରୂପରେ ରହିଛି, ଯେଉଁଠାରେ p କନଷ୍ଟାଣ୍ଟ ଟର୍ମ୍ 12 କୁ ବିଭାଜିତ କରିଥାଏ ଏବଂ q ଅଗ୍ରଣୀ ଗୁଣାଙ୍କ 3କୁ ବିଭାଜିତ କରିଥାଏ. ଏହିଭଳି ଗୋଟିଏ ରୁଟ୍ ହେଉଛି 2. x-2 ଦ୍ୱାରା ବିଭାଜିତ କରିବା ଦ୍ୱାରା ପଲିନୋମିଆଲର ଗୁଣକ ବାହାର କରନ୍ତୁ.
a+b=-7 ab=3\left(-6\right)=-18
3x^{2}-7x-6କୁ ବିବେଚନା କରନ୍ତୁ. ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 3x^{2}+ax+bx-6 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-18 2,-9 3,-6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -18 ପ୍ରଦାନ କରିଥାଏ.
1-18=-17 2-9=-7 3-6=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-9 b=2
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -7 ପ୍ରଦାନ କରିଥାଏ.
\left(3x^{2}-9x\right)+\left(2x-6\right)
\left(3x^{2}-9x\right)+\left(2x-6\right) ଭାବରେ 3x^{2}-7x-6 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(x-3\right)+2\left(x-3\right)
ପ୍ରଥମଟିରେ 3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(3x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(x-2\right)\left(3x+2\right)
ସମ୍ପୂର୍ଣ୍ଣ ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି ପୁନଃଲେଖନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}