ଗୁଣକ
\left(5x+9\right)\left(5x+11\right)
ମୂଲ୍ୟାୟନ କରିବା
\left(5x+9\right)\left(5x+11\right)
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=100 ab=25\times 99=2475
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 25x^{2}+ax+bx+99 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,2475 3,825 5,495 9,275 11,225 15,165 25,99 33,75 45,55
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 2475 ପ୍ରଦାନ କରିଥାଏ.
1+2475=2476 3+825=828 5+495=500 9+275=284 11+225=236 15+165=180 25+99=124 33+75=108 45+55=100
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=45 b=55
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 100 ପ୍ରଦାନ କରିଥାଏ.
\left(25x^{2}+45x\right)+\left(55x+99\right)
\left(25x^{2}+45x\right)+\left(55x+99\right) ଭାବରେ 25x^{2}+100x+99 ପୁନଃ ଲେଖନ୍ତୁ.
5x\left(5x+9\right)+11\left(5x+9\right)
ପ୍ରଥମଟିରେ 5x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 11 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(5x+9\right)\left(5x+11\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 5x+9 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
25x^{2}+100x+99=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-100±\sqrt{100^{2}-4\times 25\times 99}}{2\times 25}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-100±\sqrt{10000-4\times 25\times 99}}{2\times 25}
ବର୍ଗ 100.
x=\frac{-100±\sqrt{10000-100\times 99}}{2\times 25}
-4 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-100±\sqrt{10000-9900}}{2\times 25}
-100 କୁ 99 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-100±\sqrt{100}}{2\times 25}
10000 କୁ -9900 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-100±10}{2\times 25}
100 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-100±10}{50}
2 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{90}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-100±10}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -100 କୁ 10 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{9}{5}
10 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-90}{50} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{110}{50}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-100±10}{50} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -100 ରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{11}{5}
10 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-110}{50} ହ୍ରାସ କରନ୍ତୁ.
25x^{2}+100x+99=25\left(x-\left(-\frac{9}{5}\right)\right)\left(x-\left(-\frac{11}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -\frac{9}{5} ଏବଂ x_{2} ପାଇଁ -\frac{11}{5} ପ୍ରତିବଦଳ କରନ୍ତୁ.
25x^{2}+100x+99=25\left(x+\frac{9}{5}\right)\left(x+\frac{11}{5}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
25x^{2}+100x+99=25\times \frac{5x+9}{5}\left(x+\frac{11}{5}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{9}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
25x^{2}+100x+99=25\times \frac{5x+9}{5}\times \frac{5x+11}{5}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{11}{5} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
25x^{2}+100x+99=25\times \frac{\left(5x+9\right)\left(5x+11\right)}{5\times 5}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{5x+9}{5} କୁ \frac{5x+11}{5} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
25x^{2}+100x+99=25\times \frac{\left(5x+9\right)\left(5x+11\right)}{25}
5 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
25x^{2}+100x+99=\left(5x+9\right)\left(5x+11\right)
25 ଏବଂ 25 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 25 ବାତିଲ୍ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}