ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
q ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

e^{b+q}+2=30
ସମୀକରଣକୁ ସମାଧାନ କରିବା ପାଇଁ ଘାତାଙ୍କ ଏବଂ ଲଗାରିଦମ୍‌‌ଗୁଡିକ ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
e^{b+q}=28
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
\log(e^{b+q})=\log(28)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ଲଗାରିଦିମ୍‌ ବାହାର କରନ୍ତୁ.
\left(b+q\right)\log(e)=\log(28)
ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି ହୋଇଥିବା ଏକ ସଂଖ୍ୟାର ଲଗାରିଦମ୍‌ ଏହି ସଂଖ୍ୟାର ଲଗାରିଦମ୍‌ର ପାୱାର୍‌ ଗୁଣା ହୋଇଥାଏ.
b+q=\frac{\log(28)}{\log(e)}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \log(e) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b+q=\log_{e}\left(28\right)
ମୂଳ-ପରିବର୍ତ୍ତନ କରିବା ସୂତ୍ର ଅନୁସାରେ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
b=\ln(28)-q
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ q ବିୟୋଗ କରନ୍ତୁ.
e^{q+b}+2=30
ସମୀକରଣକୁ ସମାଧାନ କରିବା ପାଇଁ ଘାତାଙ୍କ ଏବଂ ଲଗାରିଦମ୍‌‌ଗୁଡିକ ନିୟମଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
e^{q+b}=28
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
\log(e^{q+b})=\log(28)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ଲଗାରିଦିମ୍‌ ବାହାର କରନ୍ତୁ.
\left(q+b\right)\log(e)=\log(28)
ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି ହୋଇଥିବା ଏକ ସଂଖ୍ୟାର ଲଗାରିଦମ୍‌ ଏହି ସଂଖ୍ୟାର ଲଗାରିଦମ୍‌ର ପାୱାର୍‌ ଗୁଣା ହୋଇଥାଏ.
q+b=\frac{\log(28)}{\log(e)}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \log(e) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
q+b=\log_{e}\left(28\right)
ମୂଳ-ପରିବର୍ତ୍ତନ କରିବା ସୂତ୍ର ଅନୁସାରେ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
q=\ln(28)-b
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ b ବିୟୋଗ କରନ୍ତୁ.