d u = 2 x + 3
d ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}d=\frac{2x+3}{u}\text{, }&u\neq 0\\d\in \mathrm{C}\text{, }&x=-\frac{3}{2}\text{ and }u=0\end{matrix}\right.
u ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}u=\frac{2x+3}{d}\text{, }&d\neq 0\\u\in \mathrm{C}\text{, }&x=-\frac{3}{2}\text{ and }d=0\end{matrix}\right.
d ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}d=\frac{2x+3}{u}\text{, }&u\neq 0\\d\in \mathrm{R}\text{, }&x=-\frac{3}{2}\text{ and }u=0\end{matrix}\right.
u ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}u=\frac{2x+3}{d}\text{, }&d\neq 0\\u\in \mathrm{R}\text{, }&x=-\frac{3}{2}\text{ and }d=0\end{matrix}\right.
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
ud=2x+3
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{ud}{u}=\frac{2x+3}{u}
ଉଭୟ ପାର୍ଶ୍ୱକୁ u ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
d=\frac{2x+3}{u}
u ଦ୍ୱାରା ବିଭାଜନ କରିବା u ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
du=2x+3
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{du}{d}=\frac{2x+3}{d}
ଉଭୟ ପାର୍ଶ୍ୱକୁ d ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
u=\frac{2x+3}{d}
d ଦ୍ୱାରା ବିଭାଜନ କରିବା d ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ud=2x+3
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{ud}{u}=\frac{2x+3}{u}
ଉଭୟ ପାର୍ଶ୍ୱକୁ u ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
d=\frac{2x+3}{u}
u ଦ୍ୱାରା ବିଭାଜନ କରିବା u ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
du=2x+3
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{du}{d}=\frac{2x+3}{d}
ଉଭୟ ପାର୍ଶ୍ୱକୁ d ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
u=\frac{2x+3}{d}
d ଦ୍ୱାରା ବିଭାଜନ କରିବା d ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}