ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-11 ab=30
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର b^{2}+\left(a+b\right)b+ab=\left(b+a\right)\left(b+b\right) ବ୍ୟବହାର କରି b^{2}-11b+30 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-30 -2,-15 -3,-10 -5,-6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 30 ପ୍ରଦାନ କରିଥାଏ.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-6 b=-5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -11 ପ୍ରଦାନ କରିଥାଏ.
\left(b-6\right)\left(b-5\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(b+a\right)\left(b+b\right) ପୁନଃଲେଖନ୍ତୁ.
b=6 b=5
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, b-6=0 ଏବଂ b-5=0 ସମାଧାନ କରନ୍ତୁ.
a+b=-11 ab=1\times 30=30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ b^{2}+ab+bb+30 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-30 -2,-15 -3,-10 -5,-6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 30 ପ୍ରଦାନ କରିଥାଏ.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-6 b=-5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -11 ପ୍ରଦାନ କରିଥାଏ.
\left(b^{2}-6b\right)+\left(-5b+30\right)
\left(b^{2}-6b\right)+\left(-5b+30\right) ଭାବରେ b^{2}-11b+30 ପୁନଃ ଲେଖନ୍ତୁ.
b\left(b-6\right)-5\left(b-6\right)
ପ୍ରଥମଟିରେ b ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(b-6\right)\left(b-5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ b-6 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
b=6 b=5
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, b-6=0 ଏବଂ b-5=0 ସମାଧାନ କରନ୍ତୁ.
b^{2}-11b+30=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
b=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 30}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -11, ଏବଂ c ପାଇଁ 30 ପ୍ରତିବଦଳ କରନ୍ତୁ.
b=\frac{-\left(-11\right)±\sqrt{121-4\times 30}}{2}
ବର୍ଗ -11.
b=\frac{-\left(-11\right)±\sqrt{121-120}}{2}
-4 କୁ 30 ଥର ଗୁଣନ କରନ୍ତୁ.
b=\frac{-\left(-11\right)±\sqrt{1}}{2}
121 କୁ -120 ସହ ଯୋଡନ୍ତୁ.
b=\frac{-\left(-11\right)±1}{2}
1 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
b=\frac{11±1}{2}
-11 ର ବିପରୀତ ହେଉଛି 11.
b=\frac{12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ b=\frac{11±1}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 11 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
b=6
12 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b=\frac{10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ b=\frac{11±1}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 11 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
b=5
10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b=6 b=5
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
b^{2}-11b+30=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
b^{2}-11b+30-30=-30
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ.
b^{2}-11b=-30
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 30 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
b^{2}-11b+\left(-\frac{11}{2}\right)^{2}=-30+\left(-\frac{11}{2}\right)^{2}
-\frac{11}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -11 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{11}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
b^{2}-11b+\frac{121}{4}=-30+\frac{121}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{11}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
b^{2}-11b+\frac{121}{4}=\frac{1}{4}
-30 କୁ \frac{121}{4} ସହ ଯୋଡନ୍ତୁ.
\left(b-\frac{11}{2}\right)^{2}=\frac{1}{4}
ଗୁଣନୀୟକ b^{2}-11b+\frac{121}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(b-\frac{11}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
b-\frac{11}{2}=\frac{1}{2} b-\frac{11}{2}=-\frac{1}{2}
ସରଳୀକୃତ କରିବା.
b=6 b=5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{11}{2} ଯୋଡନ୍ତୁ.