a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=\frac{x+1}{x-1}
x\neq 1
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{a+1}{a-1}
a\neq 1
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
ax+a^{2}-x=a\left(a+1\right)+1
a କୁ x+a ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
ax+a^{2}-x=a^{2}+a+1
a କୁ a+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
ax+a^{2}-x-a^{2}=a+1
ଉଭୟ ପାର୍ଶ୍ୱରୁ a^{2} ବିୟୋଗ କରନ୍ତୁ.
ax-x=a+1
0 ପାଇବାକୁ a^{2} ଏବଂ -a^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
ax-x-a=1
ଉଭୟ ପାର୍ଶ୍ୱରୁ a ବିୟୋଗ କରନ୍ତୁ.
ax-a=1+x
ଉଭୟ ପାର୍ଶ୍ଵକୁ x ଯୋଡନ୍ତୁ.
\left(x-1\right)a=1+x
a ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(x-1\right)a=x+1
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(x-1\right)a}{x-1}=\frac{x+1}{x-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ x-1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\frac{x+1}{x-1}
x-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା x-1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ax+a^{2}-x=a\left(a+1\right)+1
a କୁ x+a ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
ax+a^{2}-x=a^{2}+a+1
a କୁ a+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
ax-x=a^{2}+a+1-a^{2}
ଉଭୟ ପାର୍ଶ୍ୱରୁ a^{2} ବିୟୋଗ କରନ୍ତୁ.
ax-x=a+1
0 ପାଇବାକୁ a^{2} ଏବଂ -a^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
\left(a-1\right)x=a+1
x ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(a-1\right)x}{a-1}=\frac{a+1}{a-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1+a ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{a+1}{a-1}
-1+a ଦ୍ୱାରା ବିଭାଜନ କରିବା -1+a ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}