a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=\sqrt{31}+1\approx 6.567764363
a=1-\sqrt{31}\approx -4.567764363
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a^{2}-2a-30=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-30\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -2, ଏବଂ c ପାଇଁ -30 ପ୍ରତିବଦଳ କରନ୍ତୁ.
a=\frac{-\left(-2\right)±\sqrt{4-4\left(-30\right)}}{2}
ବର୍ଗ -2.
a=\frac{-\left(-2\right)±\sqrt{4+120}}{2}
-4 କୁ -30 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-\left(-2\right)±\sqrt{124}}{2}
4 କୁ 120 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-\left(-2\right)±2\sqrt{31}}{2}
124 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=\frac{2±2\sqrt{31}}{2}
-2 ର ବିପରୀତ ହେଉଛି 2.
a=\frac{2\sqrt{31}+2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{2±2\sqrt{31}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2\sqrt{31} ସହ ଯୋଡନ୍ତୁ.
a=\sqrt{31}+1
2+2\sqrt{31} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\frac{2-2\sqrt{31}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{2±2\sqrt{31}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2\sqrt{31} ବିୟୋଗ କରନ୍ତୁ.
a=1-\sqrt{31}
2-2\sqrt{31} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\sqrt{31}+1 a=1-\sqrt{31}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
a^{2}-2a-30=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
a^{2}-2a-30-\left(-30\right)=-\left(-30\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 30 ଯୋଡନ୍ତୁ.
a^{2}-2a=-\left(-30\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -30 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
a^{2}-2a=30
0 ରୁ -30 ବିୟୋଗ କରନ୍ତୁ.
a^{2}-2a+1=30+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
a^{2}-2a+1=31
30 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(a-1\right)^{2}=31
ଗୁଣନୀୟକ a^{2}-2a+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(a-1\right)^{2}}=\sqrt{31}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
a-1=\sqrt{31} a-1=-\sqrt{31}
ସରଳୀକୃତ କରିବା.
a=\sqrt{31}+1 a=1-\sqrt{31}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}