a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=-15
a=7
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a^{2}+8a-9-96=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 96 ବିୟୋଗ କରନ୍ତୁ.
a^{2}+8a-105=0
-105 ପ୍ରାପ୍ତ କରିବାକୁ -9 ଏବଂ 96 ବିୟୋଗ କରନ୍ତୁ.
a+b=8 ab=-105
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) ବ୍ୟବହାର କରି a^{2}+8a-105 ର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,105 -3,35 -5,21 -7,15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -105 ପ୍ରଦାନ କରିଥାଏ.
-1+105=104 -3+35=32 -5+21=16 -7+15=8
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-7 b=15
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 8 ପ୍ରଦାନ କରିଥାଏ.
\left(a-7\right)\left(a+15\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(a+a\right)\left(a+b\right) ପୁନଃଲେଖନ୍ତୁ.
a=7 a=-15
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, a-7=0 ଏବଂ a+15=0 ସମାଧାନ କରନ୍ତୁ.
a^{2}+8a-9-96=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 96 ବିୟୋଗ କରନ୍ତୁ.
a^{2}+8a-105=0
-105 ପ୍ରାପ୍ତ କରିବାକୁ -9 ଏବଂ 96 ବିୟୋଗ କରନ୍ତୁ.
a+b=8 ab=1\left(-105\right)=-105
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ a^{2}+aa+ba-105 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,105 -3,35 -5,21 -7,15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -105 ପ୍ରଦାନ କରିଥାଏ.
-1+105=104 -3+35=32 -5+21=16 -7+15=8
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-7 b=15
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 8 ପ୍ରଦାନ କରିଥାଏ.
\left(a^{2}-7a\right)+\left(15a-105\right)
\left(a^{2}-7a\right)+\left(15a-105\right) ଭାବରେ a^{2}+8a-105 ପୁନଃ ଲେଖନ୍ତୁ.
a\left(a-7\right)+15\left(a-7\right)
ପ୍ରଥମଟିରେ a ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 15 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(a-7\right)\left(a+15\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ a-7 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a=7 a=-15
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, a-7=0 ଏବଂ a+15=0 ସମାଧାନ କରନ୍ତୁ.
a^{2}+8a-9=96
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a^{2}+8a-9-96=96-96
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 96 ବିୟୋଗ କରନ୍ତୁ.
a^{2}+8a-9-96=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 96 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
a^{2}+8a-105=0
-9 ରୁ 96 ବିୟୋଗ କରନ୍ତୁ.
a=\frac{-8±\sqrt{8^{2}-4\left(-105\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 8, ଏବଂ c ପାଇଁ -105 ପ୍ରତିବଦଳ କରନ୍ତୁ.
a=\frac{-8±\sqrt{64-4\left(-105\right)}}{2}
ବର୍ଗ 8.
a=\frac{-8±\sqrt{64+420}}{2}
-4 କୁ -105 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-8±\sqrt{484}}{2}
64 କୁ 420 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-8±22}{2}
484 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=\frac{14}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-8±22}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -8 କୁ 22 ସହ ଯୋଡନ୍ତୁ.
a=7
14 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-\frac{30}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-8±22}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -8 ରୁ 22 ବିୟୋଗ କରନ୍ତୁ.
a=-15
-30 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=7 a=-15
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
a^{2}+8a-9=96
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
a^{2}+8a-9-\left(-9\right)=96-\left(-9\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 9 ଯୋଡନ୍ତୁ.
a^{2}+8a=96-\left(-9\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -9 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
a^{2}+8a=105
96 ରୁ -9 ବିୟୋଗ କରନ୍ତୁ.
a^{2}+8a+4^{2}=105+4^{2}
4 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, 8 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
a^{2}+8a+16=105+16
ବର୍ଗ 4.
a^{2}+8a+16=121
105 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
\left(a+4\right)^{2}=121
ଗୁଣନୀୟକ a^{2}+8a+16. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(a+4\right)^{2}}=\sqrt{121}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
a+4=11 a+4=-11
ସରଳୀକୃତ କରିବା.
a=7 a=-15
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}