ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
a ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a^{2}+24a+80=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 80 ଯୋଡନ୍ତୁ.
a+b=24 ab=80
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର a^{2}+\left(a+b\right)a+ab=\left(a+a\right)\left(a+b\right) ବ୍ୟବହାର କରି a^{2}+24a+80 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,80 2,40 4,20 5,16 8,10
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 80 ପ୍ରଦାନ କରିଥାଏ.
1+80=81 2+40=42 4+20=24 5+16=21 8+10=18
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=4 b=20
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 24 ପ୍ରଦାନ କରିଥାଏ.
\left(a+4\right)\left(a+20\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(a+a\right)\left(a+b\right) ପୁନଃଲେଖନ୍ତୁ.
a=-4 a=-20
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, a+4=0 ଏବଂ a+20=0 ସମାଧାନ କରନ୍ତୁ.
a^{2}+24a+80=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 80 ଯୋଡନ୍ତୁ.
a+b=24 ab=1\times 80=80
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ a^{2}+aa+ba+80 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,80 2,40 4,20 5,16 8,10
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 80 ପ୍ରଦାନ କରିଥାଏ.
1+80=81 2+40=42 4+20=24 5+16=21 8+10=18
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=4 b=20
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 24 ପ୍ରଦାନ କରିଥାଏ.
\left(a^{2}+4a\right)+\left(20a+80\right)
\left(a^{2}+4a\right)+\left(20a+80\right) ଭାବରେ a^{2}+24a+80 ପୁନଃ ଲେଖନ୍ତୁ.
a\left(a+4\right)+20\left(a+4\right)
ପ୍ରଥମଟିରେ a ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 20 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(a+4\right)\left(a+20\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ a+4 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
a=-4 a=-20
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, a+4=0 ଏବଂ a+20=0 ସମାଧାନ କରନ୍ତୁ.
a^{2}+24a=-80
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a^{2}+24a-\left(-80\right)=-80-\left(-80\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 80 ଯୋଡନ୍ତୁ.
a^{2}+24a-\left(-80\right)=0
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -80 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
a^{2}+24a+80=0
0 ରୁ -80 ବିୟୋଗ କରନ୍ତୁ.
a=\frac{-24±\sqrt{24^{2}-4\times 80}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 24, ଏବଂ c ପାଇଁ 80 ପ୍ରତିବଦଳ କରନ୍ତୁ.
a=\frac{-24±\sqrt{576-4\times 80}}{2}
ବର୍ଗ 24.
a=\frac{-24±\sqrt{576-320}}{2}
-4 କୁ 80 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-24±\sqrt{256}}{2}
576 କୁ -320 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-24±16}{2}
256 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=-\frac{8}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-24±16}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -24 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
a=-4
-8 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-\frac{40}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-24±16}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -24 ରୁ 16 ବିୟୋଗ କରନ୍ତୁ.
a=-20
-40 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-4 a=-20
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
a^{2}+24a=-80
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
a^{2}+24a+12^{2}=-80+12^{2}
12 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 24 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ 12 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
a^{2}+24a+144=-80+144
ବର୍ଗ 12.
a^{2}+24a+144=64
-80 କୁ 144 ସହ ଯୋଡନ୍ତୁ.
\left(a+12\right)^{2}=64
ଗୁଣନୀୟକ a^{2}+24a+144. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(a+12\right)^{2}}=\sqrt{64}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
a+12=8 a+12=-8
ସରଳୀକୃତ କରିବା.
a=-4 a=-20
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.