r ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}r=\frac{S}{r_{1}w^{4}}\text{, }&r_{1}\neq 0\text{ and }w\neq 0\\r\in \mathrm{R}\text{, }&\left(r_{1}=0\text{ or }w=0\right)\text{ and }S=0\end{matrix}\right.
S ପାଇଁ ସମାଧାନ କରନ୍ତୁ
S=rr_{1}w^{4}
କ୍ୱିଜ୍
Algebra
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
S = ( w ^ { 2 } \cdot r ) \cdot ( w ^ { 2 } \cdot r _ { 1 } )
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
S=w^{4}rr_{1}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଯୋଡନ୍ତୁ.
w^{4}rr_{1}=S
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
r_{1}w^{4}r=S
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{r_{1}w^{4}r}{r_{1}w^{4}}=\frac{S}{r_{1}w^{4}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ w^{4}r_{1} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
r=\frac{S}{r_{1}w^{4}}
w^{4}r_{1} ଦ୍ୱାରା ବିଭାଜନ କରିବା w^{4}r_{1} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
S=w^{4}rr_{1}
ସମାନ ଆଧାରର ପାୱାର୍ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}