ଗୁଣକ
\left(3a-2\right)\left(a+1\right)
ମୂଲ୍ୟାୟନ କରିବା
\left(3a-2\right)\left(a+1\right)
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
p+q=1 pq=3\left(-2\right)=-6
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 3a^{2}+pa+qa-2 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. p ଏବଂ q ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,6 -2,3
ଯେହେତୁ pq ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ p ଏବଂ q ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ p+q ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -6 ପ୍ରଦାନ କରିଥାଏ.
-1+6=5 -2+3=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
p=-2 q=3
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 1 ପ୍ରଦାନ କରିଥାଏ.
\left(3a^{2}-2a\right)+\left(3a-2\right)
\left(3a^{2}-2a\right)+\left(3a-2\right) ଭାବରେ 3a^{2}+a-2 ପୁନଃ ଲେଖନ୍ତୁ.
a\left(3a-2\right)+3a-2
3a^{2}-2aରେ a ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3a-2\right)\left(a+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3a-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
3a^{2}+a-2=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍କୁ ଫ୍ୟାକ୍ଟର୍ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
a=\frac{-1±\sqrt{1^{2}-4\times 3\left(-2\right)}}{2\times 3}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
a=\frac{-1±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
ବର୍ଗ 1.
a=\frac{-1±\sqrt{1-12\left(-2\right)}}{2\times 3}
-4 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-1±\sqrt{1+24}}{2\times 3}
-12 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{-1±\sqrt{25}}{2\times 3}
1 କୁ 24 ସହ ଯୋଡନ୍ତୁ.
a=\frac{-1±5}{2\times 3}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
a=\frac{-1±5}{6}
2 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
a=\frac{4}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-1±5}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -1 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
a=\frac{2}{3}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{6} ହ୍ରାସ କରନ୍ତୁ.
a=-\frac{6}{6}
ବର୍ତ୍ତମାନ ସମୀକରଣ a=\frac{-1±5}{6} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -1 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
a=-1
-6 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
3a^{2}+a-2=3\left(a-\frac{2}{3}\right)\left(a-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{2}{3} ଏବଂ x_{2} ପାଇଁ -1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
3a^{2}+a-2=3\left(a-\frac{2}{3}\right)\left(a+1\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
3a^{2}+a-2=3\times \frac{3a-2}{3}\left(a+1\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା a ରୁ \frac{2}{3} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
3a^{2}+a-2=\left(3a-2\right)\left(a+1\right)
3 ଏବଂ 3 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 3 ବାତିଲ୍ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}