E ପାଇଁ ସମାଧାନ କରନ୍ତୁ
E = \frac{\sqrt{1737221} + 1317}{2} \approx 1317.518398833
E=\frac{1317-\sqrt{1737221}}{2}\approx -0.518398833
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
EE+E\left(-1317\right)=683
ଭାରିଏବୁଲ୍ E 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ E ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
E^{2}+E\left(-1317\right)=683
E^{2} ପ୍ରାପ୍ତ କରିବାକୁ E ଏବଂ E ଗୁଣନ କରନ୍ତୁ.
E^{2}+E\left(-1317\right)-683=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 683 ବିୟୋଗ କରନ୍ତୁ.
E^{2}-1317E-683=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
E=\frac{-\left(-1317\right)±\sqrt{\left(-1317\right)^{2}-4\left(-683\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -1317, ଏବଂ c ପାଇଁ -683 ପ୍ରତିବଦଳ କରନ୍ତୁ.
E=\frac{-\left(-1317\right)±\sqrt{1734489-4\left(-683\right)}}{2}
ବର୍ଗ -1317.
E=\frac{-\left(-1317\right)±\sqrt{1734489+2732}}{2}
-4 କୁ -683 ଥର ଗୁଣନ କରନ୍ତୁ.
E=\frac{-\left(-1317\right)±\sqrt{1737221}}{2}
1734489 କୁ 2732 ସହ ଯୋଡନ୍ତୁ.
E=\frac{1317±\sqrt{1737221}}{2}
-1317 ର ବିପରୀତ ହେଉଛି 1317.
E=\frac{\sqrt{1737221}+1317}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ E=\frac{1317±\sqrt{1737221}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 1317 କୁ \sqrt{1737221} ସହ ଯୋଡନ୍ତୁ.
E=\frac{1317-\sqrt{1737221}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ E=\frac{1317±\sqrt{1737221}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 1317 ରୁ \sqrt{1737221} ବିୟୋଗ କରନ୍ତୁ.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
EE+E\left(-1317\right)=683
ଭାରିଏବୁଲ୍ E 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ E ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
E^{2}+E\left(-1317\right)=683
E^{2} ପ୍ରାପ୍ତ କରିବାକୁ E ଏବଂ E ଗୁଣନ କରନ୍ତୁ.
E^{2}-1317E=683
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
E^{2}-1317E+\left(-\frac{1317}{2}\right)^{2}=683+\left(-\frac{1317}{2}\right)^{2}
-\frac{1317}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -1317 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1317}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
E^{2}-1317E+\frac{1734489}{4}=683+\frac{1734489}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1317}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
E^{2}-1317E+\frac{1734489}{4}=\frac{1737221}{4}
683 କୁ \frac{1734489}{4} ସହ ଯୋଡନ୍ତୁ.
\left(E-\frac{1317}{2}\right)^{2}=\frac{1737221}{4}
ଗୁଣନୀୟକ E^{2}-1317E+\frac{1734489}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(E-\frac{1317}{2}\right)^{2}}=\sqrt{\frac{1737221}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
E-\frac{1317}{2}=\frac{\sqrt{1737221}}{2} E-\frac{1317}{2}=-\frac{\sqrt{1737221}}{2}
ସରଳୀକୃତ କରିବା.
E=\frac{\sqrt{1737221}+1317}{2} E=\frac{1317-\sqrt{1737221}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1317}{2} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}