b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}b=\frac{Cm}{m+1}\text{, }&m\neq -1\text{ and }m\neq 0\\b\in \mathrm{R}\text{, }&m=-1\text{ and }C=0\end{matrix}\right.
C ପାଇଁ ସମାଧାନ କରନ୍ତୁ
C=b+\frac{b}{m}
m\neq 0
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
Cm=b\left(1+\frac{1}{m}\right)m
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ m ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
Cm=b\left(\frac{m}{m}+\frac{1}{m}\right)m
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{m}{m} ଥର ଗୁଣନ କରନ୍ତୁ.
Cm=b\times \frac{m+1}{m}m
ଯେହେତୁ \frac{m}{m} ଏବଂ \frac{1}{m} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
Cm=\frac{b\left(m+1\right)}{m}m
b\times \frac{m+1}{m} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
Cm=\frac{b\left(m+1\right)m}{m}
\frac{b\left(m+1\right)}{m}m କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
Cm=b\left(m+1\right)
ଉଭୟ ଲବ ଓ ହରରେ m ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
Cm=bm+b
b କୁ m+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
bm+b=Cm
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
\left(m+1\right)b=Cm
b ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(m+1\right)b}{m+1}=\frac{Cm}{m+1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ m+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
b=\frac{Cm}{m+1}
m+1 ଦ୍ୱାରା ବିଭାଜନ କରିବା m+1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}