ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-17 ab=9\left(-2\right)=-18
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 9z^{2}+az+bz-2 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-18 2,-9 3,-6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -18 ପ୍ରଦାନ କରିଥାଏ.
1-18=-17 2-9=-7 3-6=-3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-18 b=1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -17 ପ୍ରଦାନ କରିଥାଏ.
\left(9z^{2}-18z\right)+\left(z-2\right)
\left(9z^{2}-18z\right)+\left(z-2\right) ଭାବରେ 9z^{2}-17z-2 ପୁନଃ ଲେଖନ୍ତୁ.
9z\left(z-2\right)+z-2
9z^{2}-18zରେ 9z ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(z-2\right)\left(9z+1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ z-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
9z^{2}-17z-2=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
z=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
z=\frac{-\left(-17\right)±\sqrt{289-4\times 9\left(-2\right)}}{2\times 9}
ବର୍ଗ -17.
z=\frac{-\left(-17\right)±\sqrt{289-36\left(-2\right)}}{2\times 9}
-4 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
z=\frac{-\left(-17\right)±\sqrt{289+72}}{2\times 9}
-36 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
z=\frac{-\left(-17\right)±\sqrt{361}}{2\times 9}
289 କୁ 72 ସହ ଯୋଡନ୍ତୁ.
z=\frac{-\left(-17\right)±19}{2\times 9}
361 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
z=\frac{17±19}{2\times 9}
-17 ର ବିପରୀତ ହେଉଛି 17.
z=\frac{17±19}{18}
2 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
z=\frac{36}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ z=\frac{17±19}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 17 କୁ 19 ସହ ଯୋଡନ୍ତୁ.
z=2
36 କୁ 18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
z=-\frac{2}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ z=\frac{17±19}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 17 ରୁ 19 ବିୟୋଗ କରନ୍ତୁ.
z=-\frac{1}{9}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{18} ହ୍ରାସ କରନ୍ତୁ.
9z^{2}-17z-2=9\left(z-2\right)\left(z-\left(-\frac{1}{9}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 2 ଏବଂ x_{2} ପାଇଁ -\frac{1}{9} ପ୍ରତିବଦଳ କରନ୍ତୁ.
9z^{2}-17z-2=9\left(z-2\right)\left(z+\frac{1}{9}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
9z^{2}-17z-2=9\left(z-2\right)\times \frac{9z+1}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା z ସହିତ \frac{1}{9} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
9z^{2}-17z-2=\left(z-2\right)\left(9z+1\right)
9 ଏବଂ 9 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 9 ବାତିଲ୍‌ କରନ୍ତୁ.