ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

9x^{2}-4x-2=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 9\left(-2\right)}}{2\times 9}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 9, b ପାଇଁ -4, ଏବଂ c ପାଇଁ -2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 9\left(-2\right)}}{2\times 9}
ବର୍ଗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-36\left(-2\right)}}{2\times 9}
-4 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{16+72}}{2\times 9}
-36 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-4\right)±\sqrt{88}}{2\times 9}
16 କୁ 72 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-4\right)±2\sqrt{22}}{2\times 9}
88 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{4±2\sqrt{22}}{2\times 9}
-4 ର ବିପରୀତ ହେଉଛି 4.
x=\frac{4±2\sqrt{22}}{18}
2 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{22}+4}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{22}}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 4 କୁ 2\sqrt{22} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{22}+2}{9}
4+2\sqrt{22} କୁ 18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{4-2\sqrt{22}}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{4±2\sqrt{22}}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 4 ରୁ 2\sqrt{22} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{2-\sqrt{22}}{9}
4-2\sqrt{22} କୁ 18 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{22}+2}{9} x=\frac{2-\sqrt{22}}{9}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
9x^{2}-4x-2=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
9x^{2}-4x-2-\left(-2\right)=-\left(-2\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
9x^{2}-4x=-\left(-2\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -2 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
9x^{2}-4x=2
0 ରୁ -2 ବିୟୋଗ କରନ୍ତୁ.
\frac{9x^{2}-4x}{9}=\frac{2}{9}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 9 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{4}{9}x=\frac{2}{9}
9 ଦ୍ୱାରା ବିଭାଜନ କରିବା 9 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{4}{9}x+\left(-\frac{2}{9}\right)^{2}=\frac{2}{9}+\left(-\frac{2}{9}\right)^{2}
-\frac{2}{9} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{4}{9} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{2}{9} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{4}{9}x+\frac{4}{81}=\frac{2}{9}+\frac{4}{81}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{2}{9} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{4}{9}x+\frac{4}{81}=\frac{22}{81}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{4}{81} ସହିତ \frac{2}{9} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{2}{9}\right)^{2}=\frac{22}{81}
ଗୁଣନୀୟକ x^{2}-\frac{4}{9}x+\frac{4}{81}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{2}{9}\right)^{2}}=\sqrt{\frac{22}{81}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{2}{9}=\frac{\sqrt{22}}{9} x-\frac{2}{9}=-\frac{\sqrt{22}}{9}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{22}+2}{9} x=\frac{2-\sqrt{22}}{9}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{2}{9} ଯୋଡନ୍ତୁ.