ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=15 ab=9\times 4=36
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 9x^{2}+ax+bx+4 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,36 2,18 3,12 4,9 6,6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 36 ପ୍ରଦାନ କରିଥାଏ.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=3 b=12
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 15 ପ୍ରଦାନ କରିଥାଏ.
\left(9x^{2}+3x\right)+\left(12x+4\right)
\left(9x^{2}+3x\right)+\left(12x+4\right) ଭାବରେ 9x^{2}+15x+4 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(3x+1\right)+4\left(3x+1\right)
ପ୍ରଥମଟିରେ 3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(3x+1\right)\left(3x+4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 3x+1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
9x^{2}+15x+4=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-15±\sqrt{15^{2}-4\times 9\times 4}}{2\times 9}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-15±\sqrt{225-4\times 9\times 4}}{2\times 9}
ବର୍ଗ 15.
x=\frac{-15±\sqrt{225-36\times 4}}{2\times 9}
-4 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-15±\sqrt{225-144}}{2\times 9}
-36 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-15±\sqrt{81}}{2\times 9}
225 କୁ -144 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-15±9}{2\times 9}
81 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-15±9}{18}
2 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{6}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-15±9}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -15 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
x=-\frac{1}{3}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{18} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{24}{18}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-15±9}{18} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -15 ରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{4}{3}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-24}{18} ହ୍ରାସ କରନ୍ତୁ.
9x^{2}+15x+4=9\left(x-\left(-\frac{1}{3}\right)\right)\left(x-\left(-\frac{4}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ -\frac{1}{3} ଏବଂ x_{2} ପାଇଁ -\frac{4}{3} ପ୍ରତିବଦଳ କରନ୍ତୁ.
9x^{2}+15x+4=9\left(x+\frac{1}{3}\right)\left(x+\frac{4}{3}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
9x^{2}+15x+4=9\times \frac{3x+1}{3}\left(x+\frac{4}{3}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{1}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
9x^{2}+15x+4=9\times \frac{3x+1}{3}\times \frac{3x+4}{3}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{4}{3} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
9x^{2}+15x+4=9\times \frac{\left(3x+1\right)\left(3x+4\right)}{3\times 3}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{3x+1}{3} କୁ \frac{3x+4}{3} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
9x^{2}+15x+4=9\times \frac{\left(3x+1\right)\left(3x+4\right)}{9}
3 କୁ 3 ଥର ଗୁଣନ କରନ୍ତୁ.
9x^{2}+15x+4=\left(3x+1\right)\left(3x+4\right)
9 ଏବଂ 9 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 9 ବାତିଲ୍‌ କରନ୍ତୁ.