ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

81+2x^{2}=5x
2 ର 9 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 81 ପ୍ରାପ୍ତ କରନ୍ତୁ.
81+2x^{2}-5x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-5x+81=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 81}}{2\times 2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 2, b ପାଇଁ -5, ଏବଂ c ପାଇଁ 81 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 2\times 81}}{2\times 2}
ବର୍ଗ -5.
x=\frac{-\left(-5\right)±\sqrt{25-8\times 81}}{2\times 2}
-4 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{25-648}}{2\times 2}
-8 କୁ 81 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{-623}}{2\times 2}
25 କୁ -648 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{623}i}{2\times 2}
-623 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{5±\sqrt{623}i}{2\times 2}
-5 ର ବିପରୀତ ହେଉଛି 5.
x=\frac{5±\sqrt{623}i}{4}
2 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{5+\sqrt{623}i}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±\sqrt{623}i}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ i\sqrt{623} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{623}i+5}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±\sqrt{623}i}{4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ i\sqrt{623} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{5+\sqrt{623}i}{4} x=\frac{-\sqrt{623}i+5}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
81+2x^{2}=5x
2 ର 9 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 81 ପ୍ରାପ୍ତ କରନ୍ତୁ.
81+2x^{2}-5x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5x ବିୟୋଗ କରନ୍ତୁ.
2x^{2}-5x=-81
ଉଭୟ ପାର୍ଶ୍ୱରୁ 81 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
\frac{2x^{2}-5x}{2}=-\frac{81}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{5}{2}x=-\frac{81}{2}
2 ଦ୍ୱାରା ବିଭାଜନ କରିବା 2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{81}{2}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{5}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{81}{2}+\frac{25}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{623}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{16} ସହିତ -\frac{81}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{5}{4}\right)^{2}=-\frac{623}{16}
ଗୁଣନୀୟକ x^{2}-\frac{5}{2}x+\frac{25}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{623}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{4}=\frac{\sqrt{623}i}{4} x-\frac{5}{4}=-\frac{\sqrt{623}i}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{5+\sqrt{623}i}{4} x=\frac{-\sqrt{623}i+5}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{4} ଯୋଡନ୍ତୁ.