ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-90 ab=81\times 25=2025
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 81x^{2}+ax+bx+25 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-2025 -3,-675 -5,-405 -9,-225 -15,-135 -25,-81 -27,-75 -45,-45
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 2025 ପ୍ରଦାନ କରିଥାଏ.
-1-2025=-2026 -3-675=-678 -5-405=-410 -9-225=-234 -15-135=-150 -25-81=-106 -27-75=-102 -45-45=-90
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-45 b=-45
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -90 ପ୍ରଦାନ କରିଥାଏ.
\left(81x^{2}-45x\right)+\left(-45x+25\right)
\left(81x^{2}-45x\right)+\left(-45x+25\right) ଭାବରେ 81x^{2}-90x+25 ପୁନଃ ଲେଖନ୍ତୁ.
9x\left(9x-5\right)-5\left(9x-5\right)
ପ୍ରଥମଟିରେ 9x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(9x-5\right)\left(9x-5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 9x-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(9x-5\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
factor(81x^{2}-90x+25)
ଏହି ଟ୍ରାଇନମିଆଲ୍‌ର ଏକ ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ରୂପ ରହିଛି, ସମ୍ଭବତଃ ଏକ ସାଧାରଣ ଗୁଣନୀୟକ ଦ୍ୱାରା ଗୁଣିତ ହୋଇଥାଏ. ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକର ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କରିବା ଦ୍ୱାରା ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗଗୁଡିକୁ ଗୁଣନୀୟକଯୁକ୍ତ କରାଯାଇପାରିବ.
gcf(81,-90,25)=1
ଗୁଣାଙ୍କଗୁଡିକର ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନୀୟକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\sqrt{81x^{2}}=9x
ଅଗ୍ରଣୀ ପଦ, 81x^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\sqrt{25}=5
ଅନୁଗାମୀ ପଦ, 25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\left(9x-5\right)^{2}
ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗ ହେଉଛି ବାଇନମିଆଲ୍‌ର ବର୍ଗ ଯାହା ହେଉଛି ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକ ବର୍ଗମୂଳର ପାର୍ଥକ୍ୟ କିମ୍ବା ସମଷ୍ଟି, ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ମଧ୍ୟମ ପଦର ଚିହ୍ନ ଦ୍ୱାରା ନିର୍ଦ୍ଧାରିତ ଚିହ୍ନ ସହିତ.
81x^{2}-90x+25=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 81\times 25}}{2\times 81}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 81\times 25}}{2\times 81}
ବର୍ଗ -90.
x=\frac{-\left(-90\right)±\sqrt{8100-324\times 25}}{2\times 81}
-4 କୁ 81 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-90\right)±\sqrt{8100-8100}}{2\times 81}
-324 କୁ 25 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-90\right)±\sqrt{0}}{2\times 81}
8100 କୁ -8100 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-90\right)±0}{2\times 81}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{90±0}{2\times 81}
-90 ର ବିପରୀତ ହେଉଛି 90.
x=\frac{90±0}{162}
2 କୁ 81 ଥର ଗୁଣନ କରନ୍ତୁ.
81x^{2}-90x+25=81\left(x-\frac{5}{9}\right)\left(x-\frac{5}{9}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{5}{9} ଏବଂ x_{2} ପାଇଁ \frac{5}{9} ପ୍ରତିବଦଳ କରନ୍ତୁ.
81x^{2}-90x+25=81\times \frac{9x-5}{9}\left(x-\frac{5}{9}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{5}{9} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
81x^{2}-90x+25=81\times \frac{9x-5}{9}\times \frac{9x-5}{9}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{5}{9} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
81x^{2}-90x+25=81\times \frac{\left(9x-5\right)\left(9x-5\right)}{9\times 9}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{9x-5}{9} କୁ \frac{9x-5}{9} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
81x^{2}-90x+25=81\times \frac{\left(9x-5\right)\left(9x-5\right)}{81}
9 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
81x^{2}-90x+25=\left(9x-5\right)\left(9x-5\right)
81 ଏବଂ 81 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 81 ବାତିଲ୍‌ କରନ୍ତୁ.