x ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
x=\frac{7+\sqrt{15}i}{16}\approx 0.4375+0.242061459i
x=\frac{-\sqrt{15}i+7}{16}\approx 0.4375-0.242061459i
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
8x^{2}-7x=-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 7x ବିୟୋଗ କରନ୍ତୁ.
8x^{2}-7x+2=0
ଉଭୟ ପାର୍ଶ୍ଵକୁ 2 ଯୋଡନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 8\times 2}}{2\times 8}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 8, b ପାଇଁ -7, ଏବଂ c ପାଇଁ 2 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 8\times 2}}{2\times 8}
ବର୍ଗ -7.
x=\frac{-\left(-7\right)±\sqrt{49-32\times 2}}{2\times 8}
-4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{49-64}}{2\times 8}
-32 କୁ 2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{-15}}{2\times 8}
49 କୁ -64 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{15}i}{2\times 8}
-15 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{7±\sqrt{15}i}{2\times 8}
-7 ର ବିପରୀତ ହେଉଛି 7.
x=\frac{7±\sqrt{15}i}{16}
2 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{7+\sqrt{15}i}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±\sqrt{15}i}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 7 କୁ i\sqrt{15} ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\sqrt{15}i+7}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±\sqrt{15}i}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 7 ରୁ i\sqrt{15} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{7+\sqrt{15}i}{16} x=\frac{-\sqrt{15}i+7}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
8x^{2}-7x=-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 7x ବିୟୋଗ କରନ୍ତୁ.
\frac{8x^{2}-7x}{8}=-\frac{2}{8}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{7}{8}x=-\frac{2}{8}
8 ଦ୍ୱାରା ବିଭାଜନ କରିବା 8 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{7}{8}x=-\frac{1}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-2}{8} ହ୍ରାସ କରନ୍ତୁ.
x^{2}-\frac{7}{8}x+\left(-\frac{7}{16}\right)^{2}=-\frac{1}{4}+\left(-\frac{7}{16}\right)^{2}
-\frac{7}{16} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{7}{8} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{16} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{7}{8}x+\frac{49}{256}=-\frac{1}{4}+\frac{49}{256}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{16} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{7}{8}x+\frac{49}{256}=-\frac{15}{256}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{49}{256} ସହିତ -\frac{1}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{7}{16}\right)^{2}=-\frac{15}{256}
ଗୁଣନୀୟକ x^{2}-\frac{7}{8}x+\frac{49}{256}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{7}{16}\right)^{2}}=\sqrt{-\frac{15}{256}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{7}{16}=\frac{\sqrt{15}i}{16} x-\frac{7}{16}=-\frac{\sqrt{15}i}{16}
ସରଳୀକୃତ କରିବା.
x=\frac{7+\sqrt{15}i}{16} x=\frac{-\sqrt{15}i+7}{16}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{16} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}