ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

8x^{2}+17x+2=0
ଅସମତାକୁ ସମାଧାନ କରିବାକୁ, ହାମ ହାତ ପାର୍ଶ୍ୱର ଗୁଣକ ବାହାର କରନ୍ତୁ. ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-17±\sqrt{17^{2}-4\times 8\times 2}}{2\times 8}
ଫର୍ମ ax^{2}+bx+c=0 ଠାରୁ ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲା ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. a ପାଇଁ 8, b ପାଇଁ 17, ଏବଂ c ପାଇଁ 2 କ୍ୱାଡ୍ରାଟିକ୍‌ ଫର୍ମୁଲାରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-17±15}{16}
ହିସାବଗୁଡିକ କରନ୍ତୁ.
x=-\frac{1}{8} x=-2
± ଯୁକ୍ତ ଥିବା ବେଳେ ଏବଂ ± ବିଯୁକ୍ତ ଥିବା ବେଳେ ସମୀକରଣ x=\frac{-17±15}{16} ସମାଧାନ କରନ୍ତୁ.
8\left(x+\frac{1}{8}\right)\left(x+2\right)\leq 0
ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକ ବ୍ୟବହାର କରିବା ଦ୍ୱାରା ଅସମତାକୁ ପୁନଃ ଲେଖନ୍ତୁ.
x+\frac{1}{8}\geq 0 x+2\leq 0
ଉତ୍ପାଦ ≤0 ହେବା ପାଇଁ, x+\frac{1}{8} ଓ x+2 ମୂଲ୍ୟଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ≥0 ହେବା ଆବଶ୍ୟକ ଏବଂ ଅନ୍ୟଟି ≤0 ହେବା ଆବଶ୍ୟକ. ଯେତେବେଳେ x+\frac{1}{8}\geq 0 ଏବଂ x+2\leq 0 ଥାଏ ଚୁକ୍ତିି ବିଚାର କରନ୍ତୁ
x\in \emptyset
ଏହା କୌଣସି x ପାଇଁ ମିଥ୍ୟା ଅଟେ.
x+2\geq 0 x+\frac{1}{8}\leq 0
ଯେତେବେଳେ x+\frac{1}{8}\leq 0 ଏବଂ x+2\geq 0 ଥାଏ ଚୁକ୍ତିି ବିଚାର କରନ୍ତୁ
x\in \begin{bmatrix}-2,-\frac{1}{8}\end{bmatrix}
ଉଭୟ ଅସମତାକୁ ପରିପୂରଣ କରୁଥିବା ସମାଧାନ ହେଉଛି x\in \left[-2,-\frac{1}{8}\right].
x\in \begin{bmatrix}-2,-\frac{1}{8}\end{bmatrix}
ଚୁଡାନ୍ତ ସମାଧାନ ହେଉଛି ପ୍ରାପ୍ତ ସମାଧାନଗୁଡିକର ଯୋଗ ଅଟେ.