ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=10 ab=8\left(-7\right)=-56
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 8x^{2}+ax+bx-7 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,56 -2,28 -4,14 -7,8
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -56 ପ୍ରଦାନ କରିଥାଏ.
-1+56=55 -2+28=26 -4+14=10 -7+8=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-4 b=14
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 10 ପ୍ରଦାନ କରିଥାଏ.
\left(8x^{2}-4x\right)+\left(14x-7\right)
\left(8x^{2}-4x\right)+\left(14x-7\right) ଭାବରେ 8x^{2}+10x-7 ପୁନଃ ଲେଖନ୍ତୁ.
4x\left(2x-1\right)+7\left(2x-1\right)
ପ୍ରଥମଟିରେ 4x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 7 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-1\right)\left(4x+7\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{1}{2} x=-\frac{7}{4}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x-1=0 ଏବଂ 4x+7=0 ସମାଧାନ କରନ୍ତୁ.
8x^{2}+10x-7=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-10±\sqrt{10^{2}-4\times 8\left(-7\right)}}{2\times 8}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 8, b ପାଇଁ 10, ଏବଂ c ପାଇଁ -7 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-10±\sqrt{100-4\times 8\left(-7\right)}}{2\times 8}
ବର୍ଗ 10.
x=\frac{-10±\sqrt{100-32\left(-7\right)}}{2\times 8}
-4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-10±\sqrt{100+224}}{2\times 8}
-32 କୁ -7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-10±\sqrt{324}}{2\times 8}
100 କୁ 224 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-10±18}{2\times 8}
324 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-10±18}{16}
2 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{8}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-10±18}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -10 କୁ 18 ସହ ଯୋଡନ୍ତୁ.
x=\frac{1}{2}
8 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{8}{16} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{28}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-10±18}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -10 ରୁ 18 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{7}{4}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-28}{16} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{1}{2} x=-\frac{7}{4}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
8x^{2}+10x-7=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
8x^{2}+10x-7-\left(-7\right)=-\left(-7\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 7 ଯୋଡନ୍ତୁ.
8x^{2}+10x=-\left(-7\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -7 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
8x^{2}+10x=7
0 ରୁ -7 ବିୟୋଗ କରନ୍ତୁ.
\frac{8x^{2}+10x}{8}=\frac{7}{8}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{10}{8}x=\frac{7}{8}
8 ଦ୍ୱାରା ବିଭାଜନ କରିବା 8 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{5}{4}x=\frac{7}{8}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{10}{8} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=\frac{7}{8}+\left(\frac{5}{8}\right)^{2}
\frac{5}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{5}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{7}{8}+\frac{25}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{5}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=\frac{81}{64}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{64} ସହିତ \frac{7}{8} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{5}{8}\right)^{2}=\frac{81}{64}
ଗୁଣନୀୟକ x^{2}+\frac{5}{4}x+\frac{25}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{\frac{81}{64}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{5}{8}=\frac{9}{8} x+\frac{5}{8}=-\frac{9}{8}
ସରଳୀକୃତ କରିବା.
x=\frac{1}{2} x=-\frac{7}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{8} ବିୟୋଗ କରନ୍ତୁ.