ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

11y^{2}-26y+8=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=-26 ab=11\times 8=88
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 11y^{2}+ay+by+8 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-88 -2,-44 -4,-22 -8,-11
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 88 ପ୍ରଦାନ କରିଥାଏ.
-1-88=-89 -2-44=-46 -4-22=-26 -8-11=-19
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-22 b=-4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -26 ପ୍ରଦାନ କରିଥାଏ.
\left(11y^{2}-22y\right)+\left(-4y+8\right)
\left(11y^{2}-22y\right)+\left(-4y+8\right) ଭାବରେ 11y^{2}-26y+8 ପୁନଃ ଲେଖନ୍ତୁ.
11y\left(y-2\right)-4\left(y-2\right)
ପ୍ରଥମଟିରେ 11y ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -4 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(y-2\right)\left(11y-4\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ y-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
y=2 y=\frac{4}{11}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, y-2=0 ଏବଂ 11y-4=0 ସମାଧାନ କରନ୍ତୁ.
11y^{2}-26y+8=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
y=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 11\times 8}}{2\times 11}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 11, b ପାଇଁ -26, ଏବଂ c ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
y=\frac{-\left(-26\right)±\sqrt{676-4\times 11\times 8}}{2\times 11}
ବର୍ଗ -26.
y=\frac{-\left(-26\right)±\sqrt{676-44\times 8}}{2\times 11}
-4 କୁ 11 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-\left(-26\right)±\sqrt{676-352}}{2\times 11}
-44 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{-\left(-26\right)±\sqrt{324}}{2\times 11}
676 କୁ -352 ସହ ଯୋଡନ୍ତୁ.
y=\frac{-\left(-26\right)±18}{2\times 11}
324 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
y=\frac{26±18}{2\times 11}
-26 ର ବିପରୀତ ହେଉଛି 26.
y=\frac{26±18}{22}
2 କୁ 11 ଥର ଗୁଣନ କରନ୍ତୁ.
y=\frac{44}{22}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{26±18}{22} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 26 କୁ 18 ସହ ଯୋଡନ୍ତୁ.
y=2
44 କୁ 22 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y=\frac{8}{22}
ବର୍ତ୍ତମାନ ସମୀକରଣ y=\frac{26±18}{22} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 26 ରୁ 18 ବିୟୋଗ କରନ୍ତୁ.
y=\frac{4}{11}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{8}{22} ହ୍ରାସ କରନ୍ତୁ.
y=2 y=\frac{4}{11}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
11y^{2}-26y+8=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
11y^{2}-26y+8-8=-8
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ.
11y^{2}-26y=-8
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 8 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{11y^{2}-26y}{11}=-\frac{8}{11}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 11 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
y^{2}-\frac{26}{11}y=-\frac{8}{11}
11 ଦ୍ୱାରା ବିଭାଜନ କରିବା 11 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
y^{2}-\frac{26}{11}y+\left(-\frac{13}{11}\right)^{2}=-\frac{8}{11}+\left(-\frac{13}{11}\right)^{2}
-\frac{13}{11} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{26}{11} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{13}{11} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
y^{2}-\frac{26}{11}y+\frac{169}{121}=-\frac{8}{11}+\frac{169}{121}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{13}{11} ବର୍ଗ ବାହାର କରନ୍ତୁ.
y^{2}-\frac{26}{11}y+\frac{169}{121}=\frac{81}{121}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{169}{121} ସହିତ -\frac{8}{11} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(y-\frac{13}{11}\right)^{2}=\frac{81}{121}
ଗୁଣନୀୟକ y^{2}-\frac{26}{11}y+\frac{169}{121}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(y-\frac{13}{11}\right)^{2}}=\sqrt{\frac{81}{121}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
y-\frac{13}{11}=\frac{9}{11} y-\frac{13}{11}=-\frac{9}{11}
ସରଳୀକୃତ କରିବା.
y=2 y=\frac{4}{11}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{11} ଯୋଡନ୍ତୁ.