ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

8x^{2}-24x-24=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 8\left(-24\right)}}{2\times 8}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 8, b ପାଇଁ -24, ଏବଂ c ପାଇଁ -24 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 8\left(-24\right)}}{2\times 8}
ବର୍ଗ -24.
x=\frac{-\left(-24\right)±\sqrt{576-32\left(-24\right)}}{2\times 8}
-4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-24\right)±\sqrt{576+768}}{2\times 8}
-32 କୁ -24 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-24\right)±\sqrt{1344}}{2\times 8}
576 କୁ 768 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-24\right)±8\sqrt{21}}{2\times 8}
1344 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{24±8\sqrt{21}}{2\times 8}
-24 ର ବିପରୀତ ହେଉଛି 24.
x=\frac{24±8\sqrt{21}}{16}
2 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{8\sqrt{21}+24}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{24±8\sqrt{21}}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 24 କୁ 8\sqrt{21} ସହ ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{21}+3}{2}
24+8\sqrt{21} କୁ 16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{24-8\sqrt{21}}{16}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{24±8\sqrt{21}}{16} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 24 ରୁ 8\sqrt{21} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{3-\sqrt{21}}{2}
24-8\sqrt{21} କୁ 16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
8x^{2}-24x-24=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
8x^{2}-24x-24-\left(-24\right)=-\left(-24\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 24 ଯୋଡନ୍ତୁ.
8x^{2}-24x=-\left(-24\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -24 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
8x^{2}-24x=24
0 ରୁ -24 ବିୟୋଗ କରନ୍ତୁ.
\frac{8x^{2}-24x}{8}=\frac{24}{8}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{24}{8}\right)x=\frac{24}{8}
8 ଦ୍ୱାରା ବିଭାଜନ କରିବା 8 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-3x=\frac{24}{8}
-24 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-3x=3
24 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=3+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-3x+\frac{9}{4}=3+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-3x+\frac{9}{4}=\frac{21}{4}
3 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{3}{2}\right)^{2}=\frac{21}{4}
ଗୁଣନୀୟକ x^{2}-3x+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{3}{2}=\frac{\sqrt{21}}{2} x-\frac{3}{2}=-\frac{\sqrt{21}}{2}
ସରଳୀକୃତ କରିବା.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ଯୋଡନ୍ତୁ.