x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\frac{1}{7}\approx 0.142857143
x=5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=-36 ab=7\times 5=35
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 7x^{2}+ax+bx+5 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
-1,-35 -5,-7
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 35 ପ୍ରଦାନ କରିଥାଏ.
-1-35=-36 -5-7=-12
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-35 b=-1
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -36 ପ୍ରଦାନ କରିଥାଏ.
\left(7x^{2}-35x\right)+\left(-x+5\right)
\left(7x^{2}-35x\right)+\left(-x+5\right) ଭାବରେ 7x^{2}-36x+5 ପୁନଃ ଲେଖନ୍ତୁ.
7x\left(x-5\right)-\left(x-5\right)
ପ୍ରଥମଟିରେ 7x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-5\right)\left(7x-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=5 x=\frac{1}{7}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-5=0 ଏବଂ 7x-1=0 ସମାଧାନ କରନ୍ତୁ.
7x^{2}-36x+5=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 7\times 5}}{2\times 7}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 7, b ପାଇଁ -36, ଏବଂ c ପାଇଁ 5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 7\times 5}}{2\times 7}
ବର୍ଗ -36.
x=\frac{-\left(-36\right)±\sqrt{1296-28\times 5}}{2\times 7}
-4 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-36\right)±\sqrt{1296-140}}{2\times 7}
-28 କୁ 5 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-36\right)±\sqrt{1156}}{2\times 7}
1296 କୁ -140 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-36\right)±34}{2\times 7}
1156 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{36±34}{2\times 7}
-36 ର ବିପରୀତ ହେଉଛି 36.
x=\frac{36±34}{14}
2 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{70}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{36±34}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 36 କୁ 34 ସହ ଯୋଡନ୍ତୁ.
x=5
70 କୁ 14 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{36±34}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 36 ରୁ 34 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{7}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{14} ହ୍ରାସ କରନ୍ତୁ.
x=5 x=\frac{1}{7}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
7x^{2}-36x+5=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
7x^{2}-36x+5-5=-5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
7x^{2}-36x=-5
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 5 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{7x^{2}-36x}{7}=-\frac{5}{7}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 7 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{36}{7}x=-\frac{5}{7}
7 ଦ୍ୱାରା ବିଭାଜନ କରିବା 7 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{36}{7}x+\left(-\frac{18}{7}\right)^{2}=-\frac{5}{7}+\left(-\frac{18}{7}\right)^{2}
-\frac{18}{7} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{36}{7} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{18}{7} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{36}{7}x+\frac{324}{49}=-\frac{5}{7}+\frac{324}{49}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{18}{7} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{36}{7}x+\frac{324}{49}=\frac{289}{49}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{324}{49} ସହିତ -\frac{5}{7} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{18}{7}\right)^{2}=\frac{289}{49}
ଗୁଣନୀୟକ x^{2}-\frac{36}{7}x+\frac{324}{49}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{18}{7}\right)^{2}}=\sqrt{\frac{289}{49}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{18}{7}=\frac{17}{7} x-\frac{18}{7}=-\frac{17}{7}
ସରଳୀକୃତ କରିବା.
x=5 x=\frac{1}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{18}{7} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}