ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-32 ab=7\left(-15\right)=-105
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 7x^{2}+ax+bx-15 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
1,-105 3,-35 5,-21 7,-15
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -105 ପ୍ରଦାନ କରିଥାଏ.
1-105=-104 3-35=-32 5-21=-16 7-15=-8
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-35 b=3
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -32 ପ୍ରଦାନ କରିଥାଏ.
\left(7x^{2}-35x\right)+\left(3x-15\right)
\left(7x^{2}-35x\right)+\left(3x-15\right) ଭାବରେ 7x^{2}-32x-15 ପୁନଃ ଲେଖନ୍ତୁ.
7x\left(x-5\right)+3\left(x-5\right)
ପ୍ରଥମଟିରେ 7x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-5\right)\left(7x+3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=5 x=-\frac{3}{7}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-5=0 ଏବଂ 7x+3=0 ସମାଧାନ କରନ୍ତୁ.
7x^{2}-32x-15=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 7\left(-15\right)}}{2\times 7}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 7, b ପାଇଁ -32, ଏବଂ c ପାଇଁ -15 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 7\left(-15\right)}}{2\times 7}
ବର୍ଗ -32.
x=\frac{-\left(-32\right)±\sqrt{1024-28\left(-15\right)}}{2\times 7}
-4 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{1024+420}}{2\times 7}
-28 କୁ -15 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-32\right)±\sqrt{1444}}{2\times 7}
1024 କୁ 420 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-32\right)±38}{2\times 7}
1444 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{32±38}{2\times 7}
-32 ର ବିପରୀତ ହେଉଛି 32.
x=\frac{32±38}{14}
2 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{70}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{32±38}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 32 କୁ 38 ସହ ଯୋଡନ୍ତୁ.
x=5
70 କୁ 14 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{6}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{32±38}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 32 ରୁ 38 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{3}{7}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-6}{14} ହ୍ରାସ କରନ୍ତୁ.
x=5 x=-\frac{3}{7}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
7x^{2}-32x-15=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
7x^{2}-32x-15-\left(-15\right)=-\left(-15\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 15 ଯୋଡନ୍ତୁ.
7x^{2}-32x=-\left(-15\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -15 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
7x^{2}-32x=15
0 ରୁ -15 ବିୟୋଗ କରନ୍ତୁ.
\frac{7x^{2}-32x}{7}=\frac{15}{7}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 7 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{32}{7}x=\frac{15}{7}
7 ଦ୍ୱାରା ବିଭାଜନ କରିବା 7 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-\frac{32}{7}x+\left(-\frac{16}{7}\right)^{2}=\frac{15}{7}+\left(-\frac{16}{7}\right)^{2}
-\frac{16}{7} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{32}{7} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{16}{7} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{32}{7}x+\frac{256}{49}=\frac{15}{7}+\frac{256}{49}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{16}{7} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{32}{7}x+\frac{256}{49}=\frac{361}{49}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{256}{49} ସହିତ \frac{15}{7} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{16}{7}\right)^{2}=\frac{361}{49}
ଗୁଣନୀୟକ x^{2}-\frac{32}{7}x+\frac{256}{49}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{16}{7}\right)^{2}}=\sqrt{\frac{361}{49}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{16}{7}=\frac{19}{7} x-\frac{16}{7}=-\frac{19}{7}
ସରଳୀକୃତ କରିବା.
x=5 x=-\frac{3}{7}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{16}{7} ଯୋଡନ୍ତୁ.