ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=3 ab=7\left(-34\right)=-238
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 7x^{2}+ax+bx-34 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,238 -2,119 -7,34 -14,17
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -238 ପ୍ରଦାନ କରିଥାଏ.
-1+238=237 -2+119=117 -7+34=27 -14+17=3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-14 b=17
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 3 ପ୍ରଦାନ କରିଥାଏ.
\left(7x^{2}-14x\right)+\left(17x-34\right)
\left(7x^{2}-14x\right)+\left(17x-34\right) ଭାବରେ 7x^{2}+3x-34 ପୁନଃ ଲେଖନ୍ତୁ.
7x\left(x-2\right)+17\left(x-2\right)
ପ୍ରଥମଟିରେ 7x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 17 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-2\right)\left(7x+17\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-2 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
7x^{2}+3x-34=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-3±\sqrt{3^{2}-4\times 7\left(-34\right)}}{2\times 7}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-3±\sqrt{9-4\times 7\left(-34\right)}}{2\times 7}
ବର୍ଗ 3.
x=\frac{-3±\sqrt{9-28\left(-34\right)}}{2\times 7}
-4 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9+952}}{2\times 7}
-28 କୁ -34 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{961}}{2\times 7}
9 କୁ 952 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-3±31}{2\times 7}
961 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-3±31}{14}
2 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{28}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±31}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -3 କୁ 31 ସହ ଯୋଡନ୍ତୁ.
x=2
28 କୁ 14 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{34}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±31}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -3 ରୁ 31 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{17}{7}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-34}{14} ହ୍ରାସ କରନ୍ତୁ.
7x^{2}+3x-34=7\left(x-2\right)\left(x-\left(-\frac{17}{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ 2 ଏବଂ x_{2} ପାଇଁ -\frac{17}{7} ପ୍ରତିବଦଳ କରନ୍ତୁ.
7x^{2}+3x-34=7\left(x-2\right)\left(x+\frac{17}{7}\right)
ଫର୍ମ p-\left(-q\right) ରୁ p+q ପର୍ଯ୍ୟନ୍ତ ସମସ୍ତ ଅଭିବ୍ୟକ୍ତିଗୁଡିକ ସରଳୀକୃତ କରନ୍ତୁ.
7x^{2}+3x-34=7\left(x-2\right)\times \frac{7x+17}{7}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା x ସହିତ \frac{17}{7} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
7x^{2}+3x-34=\left(x-2\right)\left(7x+17\right)
7 ଏବଂ 7 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 7 ବାତିଲ୍‌ କରନ୍ତୁ.