ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
t ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

7t^{2}-5t-9=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 7\left(-9\right)}}{2\times 7}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 7, b ପାଇଁ -5, ଏବଂ c ପାଇଁ -9 ପ୍ରତିବଦଳ କରନ୍ତୁ.
t=\frac{-\left(-5\right)±\sqrt{25-4\times 7\left(-9\right)}}{2\times 7}
ବର୍ଗ -5.
t=\frac{-\left(-5\right)±\sqrt{25-28\left(-9\right)}}{2\times 7}
-4 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-\left(-5\right)±\sqrt{25+252}}{2\times 7}
-28 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{-\left(-5\right)±\sqrt{277}}{2\times 7}
25 କୁ 252 ସହ ଯୋଡନ୍ତୁ.
t=\frac{5±\sqrt{277}}{2\times 7}
-5 ର ବିପରୀତ ହେଉଛି 5.
t=\frac{5±\sqrt{277}}{14}
2 କୁ 7 ଥର ଗୁଣନ କରନ୍ତୁ.
t=\frac{\sqrt{277}+5}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{5±\sqrt{277}}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ \sqrt{277} ସହ ଯୋଡନ୍ତୁ.
t=\frac{5-\sqrt{277}}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ t=\frac{5±\sqrt{277}}{14} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ \sqrt{277} ବିୟୋଗ କରନ୍ତୁ.
t=\frac{\sqrt{277}+5}{14} t=\frac{5-\sqrt{277}}{14}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
7t^{2}-5t-9=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
7t^{2}-5t-9-\left(-9\right)=-\left(-9\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 9 ଯୋଡନ୍ତୁ.
7t^{2}-5t=-\left(-9\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -9 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
7t^{2}-5t=9
0 ରୁ -9 ବିୟୋଗ କରନ୍ତୁ.
\frac{7t^{2}-5t}{7}=\frac{9}{7}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 7 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
t^{2}-\frac{5}{7}t=\frac{9}{7}
7 ଦ୍ୱାରା ବିଭାଜନ କରିବା 7 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
t^{2}-\frac{5}{7}t+\left(-\frac{5}{14}\right)^{2}=\frac{9}{7}+\left(-\frac{5}{14}\right)^{2}
-\frac{5}{14} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{5}{7} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{14} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
t^{2}-\frac{5}{7}t+\frac{25}{196}=\frac{9}{7}+\frac{25}{196}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{14} ବର୍ଗ ବାହାର କରନ୍ତୁ.
t^{2}-\frac{5}{7}t+\frac{25}{196}=\frac{277}{196}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{25}{196} ସହିତ \frac{9}{7} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(t-\frac{5}{14}\right)^{2}=\frac{277}{196}
ଗୁଣନୀୟକ t^{2}-\frac{5}{7}t+\frac{25}{196}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(t-\frac{5}{14}\right)^{2}}=\sqrt{\frac{277}{196}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
t-\frac{5}{14}=\frac{\sqrt{277}}{14} t-\frac{5}{14}=-\frac{\sqrt{277}}{14}
ସରଳୀକୃତ କରିବା.
t=\frac{\sqrt{277}+5}{14} t=\frac{5-\sqrt{277}}{14}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{14} ଯୋଡନ୍ତୁ.