I ପାଇଁ ସମାଧାନ କରନ୍ତୁ
I=\frac{2\left(\sin(t)+\cos(T)\right)}{7}
T ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
T=\left(-i\right)\ln(\frac{7}{2}I+\frac{1}{2}ie^{it}+\left(-\frac{1}{2}i\right)e^{\left(-i\right)t}+\left(-\frac{1}{2}\right)\left(\left(\left(-7\right)I+\left(-i\right)e^{it}+ie^{\left(-i\right)t}\right)^{2}-4\right)^{\frac{1}{2}})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
T=\left(-i\right)\ln(\frac{7}{2}I+\frac{1}{2}ie^{it}+\left(-\frac{1}{2}i\right)e^{\left(-i\right)t}+\frac{1}{2}\left(\left(\left(-7\right)I+\left(-i\right)e^{it}+ie^{\left(-i\right)t}\right)^{2}-4\right)^{\frac{1}{2}})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
7I=2\sin(t)+2\cos(T)
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{7I}{7}=\frac{2\left(\sin(t)+\cos(T)\right)}{7}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 7 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
I=\frac{2\left(\sin(t)+\cos(T)\right)}{7}
7 ଦ୍ୱାରା ବିଭାଜନ କରିବା 7 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}