g ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{C}\text{, }&k=-67\end{matrix}\right.
k ପାଇଁ ସମାଧାନ କରନ୍ତୁ (ଜଟଳି ସମାଧାନ)
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&g=0\end{matrix}\right.
g ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=-67\end{matrix}\right.
k ପାଇଁ ସମାଧାନ କରନ୍ତୁ
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
67g-\left(-k\right)g=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \left(-k\right)g ବିୟୋଗ କରନ୍ତୁ.
67g+kg=0
1 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ -1 ଗୁଣନ କରନ୍ତୁ.
\left(67+k\right)g=0
g ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(k+67\right)g=0
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
g=0
0 କୁ 67+k ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\left(-k\right)g=67g
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-gk=67g
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
\left(-g\right)k=67g
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -g ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=\frac{67g}{-g}
-g ଦ୍ୱାରା ବିଭାଜନ କରିବା -g ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
k=-67
67g କୁ -g ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
67g-\left(-k\right)g=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \left(-k\right)g ବିୟୋଗ କରନ୍ତୁ.
67g+kg=0
1 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ -1 ଗୁଣନ କରନ୍ତୁ.
\left(67+k\right)g=0
g ଧାରଣ କରିଥିବା ସମସ୍ତ ପଦ ସମ୍ମେଳନ କରନ୍ତୁ.
\left(k+67\right)g=0
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
g=0
0 କୁ 67+k ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\left(-k\right)g=67g
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
-gk=67g
ପଦଗୁଡିକୁ ପୁନଃକ୍ରମରେ ରଖନ୍ତୁ.
\left(-g\right)k=67g
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -g ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
k=\frac{67g}{-g}
-g ଦ୍ୱାରା ବିଭାଜନ କରିବା -g ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
k=-67
67g କୁ -g ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}