ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ଗୁଣକ
Tick mark Image
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-48 ab=64\times 9=576
ଗୋଷ୍ଠୀଭୁକ୍ତ କରିବା ଦ୍ୱାରା ଅଭିବ୍ୟକ୍ତିର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ଅଭିବ୍ୟକ୍ତି 64x^{2}+ax+bx+9 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-576 -2,-288 -3,-192 -4,-144 -6,-96 -8,-72 -9,-64 -12,-48 -16,-36 -18,-32 -24,-24
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 576 ପ୍ରଦାନ କରିଥାଏ.
-1-576=-577 -2-288=-290 -3-192=-195 -4-144=-148 -6-96=-102 -8-72=-80 -9-64=-73 -12-48=-60 -16-36=-52 -18-32=-50 -24-24=-48
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-24 b=-24
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -48 ପ୍ରଦାନ କରିଥାଏ.
\left(64x^{2}-24x\right)+\left(-24x+9\right)
\left(64x^{2}-24x\right)+\left(-24x+9\right) ଭାବରେ 64x^{2}-48x+9 ପୁନଃ ଲେଖନ୍ତୁ.
8x\left(8x-3\right)-3\left(8x-3\right)
ପ୍ରଥମଟିରେ 8x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(8x-3\right)\left(8x-3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 8x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(8x-3\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
factor(64x^{2}-48x+9)
ଏହି ଟ୍ରାଇନମିଆଲ୍‌ର ଏକ ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ରୂପ ରହିଛି, ସମ୍ଭବତଃ ଏକ ସାଧାରଣ ଗୁଣନୀୟକ ଦ୍ୱାରା ଗୁଣିତ ହୋଇଥାଏ. ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକର ବର୍ଗମୂଳ ନିର୍ଣ୍ଣୟ କରିବା ଦ୍ୱାରା ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗଗୁଡିକୁ ଗୁଣନୀୟକଯୁକ୍ତ କରାଯାଇପାରିବ.
gcf(64,-48,9)=1
ଗୁଣାଙ୍କଗୁଡିକର ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନୀୟକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\sqrt{64x^{2}}=8x
ଅଗ୍ରଣୀ ପଦ, 64x^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\sqrt{9}=3
ଅନୁଗାମୀ ପଦ, 9 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\left(8x-3\right)^{2}
ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗ ହେଉଛି ବାଇନମିଆଲ୍‌ର ବର୍ଗ ଯାହା ହେଉଛି ଅଗ୍ରଗାମୀ ଏବଂ ଅନୁଗାମୀ ପଦଗୁଡିକ ବର୍ଗମୂଳର ପାର୍ଥକ୍ୟ କିମ୍ବା ସମଷ୍ଟି, ଟ୍ରାଇନମିଆଲ୍‌ ବର୍ଗର ମଧ୍ୟମ ପଦର ଚିହ୍ନ ଦ୍ୱାରା ନିର୍ଦ୍ଧାରିତ ଚିହ୍ନ ସହିତ.
64x^{2}-48x+9=0
ଟ୍ରାନ୍ସଫର୍ମେସନ୍‌ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)ବ୍ୟବହାର କରି କ୍ୱାଡ୍ରାଟିକ୍ ପଲିନୋମିଆଲ୍‌‌କୁ ଫ୍ୟାକ୍ଟର୍‌ କରାଯାଇପାରିବ, ଯେଉଁଠାରେ x_{1} ଏବଂ x_{2} ଦ୍ୱିଘାତ ସମୀକରଣ ax^{2}+bx+c=0 ର ସମାଧାନ ଅଟେ.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 64\times 9}}{2\times 64}
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 64\times 9}}{2\times 64}
ବର୍ଗ -48.
x=\frac{-\left(-48\right)±\sqrt{2304-256\times 9}}{2\times 64}
-4 କୁ 64 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-48\right)±\sqrt{2304-2304}}{2\times 64}
-256 କୁ 9 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-48\right)±\sqrt{0}}{2\times 64}
2304 କୁ -2304 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-48\right)±0}{2\times 64}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{48±0}{2\times 64}
-48 ର ବିପରୀତ ହେଉଛି 48.
x=\frac{48±0}{128}
2 କୁ 64 ଥର ଗୁଣନ କରନ୍ତୁ.
64x^{2}-48x+9=64\left(x-\frac{3}{8}\right)\left(x-\frac{3}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ବ୍ୟବାହର କରି ମୂଳ ଅଭିବ୍ୟକ୍ତିର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ. x_{1} ପାଇଁ \frac{3}{8} ଏବଂ x_{2} ପାଇଁ \frac{3}{8} ପ୍ରତିବଦଳ କରନ୍ତୁ.
64x^{2}-48x+9=64\times \frac{8x-3}{8}\left(x-\frac{3}{8}\right)
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{3}{8} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
64x^{2}-48x+9=64\times \frac{8x-3}{8}\times \frac{8x-3}{8}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା x ରୁ \frac{3}{8} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
64x^{2}-48x+9=64\times \frac{\left(8x-3\right)\left(8x-3\right)}{8\times 8}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{8x-3}{8} କୁ \frac{8x-3}{8} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
64x^{2}-48x+9=64\times \frac{\left(8x-3\right)\left(8x-3\right)}{64}
8 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
64x^{2}-48x+9=\left(8x-3\right)\left(8x-3\right)
64 ଏବଂ 64 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 64 ବାତିଲ୍‌ କରନ୍ତୁ.