ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
p ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

a+b=-16 ab=64\times 1=64
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 64p^{2}+ap+bp+1 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,-64 -2,-32 -4,-16 -8,-8
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଋଣାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 64 ପ୍ରଦାନ କରିଥାଏ.
-1-64=-65 -2-32=-34 -4-16=-20 -8-8=-16
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-8 b=-8
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -16 ପ୍ରଦାନ କରିଥାଏ.
\left(64p^{2}-8p\right)+\left(-8p+1\right)
\left(64p^{2}-8p\right)+\left(-8p+1\right) ଭାବରେ 64p^{2}-16p+1 ପୁନଃ ଲେଖନ୍ତୁ.
8p\left(8p-1\right)-\left(8p-1\right)
ପ୍ରଥମଟିରେ 8p ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -1 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(8p-1\right)\left(8p-1\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 8p-1 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(8p-1\right)^{2}
ବାଇନମିଆଲ୍‌ ବର୍ଗ ଭାବେ ପୁଣି ଲେଖନ୍ତୁ.
p=\frac{1}{8}
ସମୀକରଣ ସମାଧାନ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 8p-1=0 ସମାଧାନ କରନ୍ତୁ.
64p^{2}-16p+1=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
p=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 64}}{2\times 64}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 64, b ପାଇଁ -16, ଏବଂ c ପାଇଁ 1 ପ୍ରତିବଦଳ କରନ୍ତୁ.
p=\frac{-\left(-16\right)±\sqrt{256-4\times 64}}{2\times 64}
ବର୍ଗ -16.
p=\frac{-\left(-16\right)±\sqrt{256-256}}{2\times 64}
-4 କୁ 64 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{-\left(-16\right)±\sqrt{0}}{2\times 64}
256 କୁ -256 ସହ ଯୋଡନ୍ତୁ.
p=-\frac{-16}{2\times 64}
0 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
p=\frac{16}{2\times 64}
-16 ର ବିପରୀତ ହେଉଛି 16.
p=\frac{16}{128}
2 କୁ 64 ଥର ଗୁଣନ କରନ୍ତୁ.
p=\frac{1}{8}
16 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{16}{128} ହ୍ରାସ କରନ୍ତୁ.
64p^{2}-16p+1=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
64p^{2}-16p+1-1=-1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
64p^{2}-16p=-1
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି 1 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
\frac{64p^{2}-16p}{64}=-\frac{1}{64}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 64 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
p^{2}+\left(-\frac{16}{64}\right)p=-\frac{1}{64}
64 ଦ୍ୱାରା ବିଭାଜନ କରିବା 64 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
p^{2}-\frac{1}{4}p=-\frac{1}{64}
16 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-16}{64} ହ୍ରାସ କରନ୍ତୁ.
p^{2}-\frac{1}{4}p+\left(-\frac{1}{8}\right)^{2}=-\frac{1}{64}+\left(-\frac{1}{8}\right)^{2}
-\frac{1}{8} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -\frac{1}{4} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{1}{8} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
p^{2}-\frac{1}{4}p+\frac{1}{64}=\frac{-1+1}{64}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{1}{8} ବର୍ଗ ବାହାର କରନ୍ତୁ.
p^{2}-\frac{1}{4}p+\frac{1}{64}=0
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{64} ସହିତ -\frac{1}{64} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(p-\frac{1}{8}\right)^{2}=0
ଗୁଣନୀୟକ p^{2}-\frac{1}{4}p+\frac{1}{64}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(p-\frac{1}{8}\right)^{2}}=\sqrt{0}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
p-\frac{1}{8}=0 p-\frac{1}{8}=0
ସରଳୀକୃତ କରିବା.
p=\frac{1}{8} p=\frac{1}{8}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{8} ଯୋଡନ୍ତୁ.
p=\frac{1}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି. ସମାଧାନଗୁଡିକ ସମାନ ଅଛି.