ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

6\times 21=x\left(x+5\right)
21 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 15 ଯୋଗ କରନ୍ତୁ.
126=x\left(x+5\right)
126 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 21 ଗୁଣନ କରନ୍ତୁ.
126=x^{2}+5x
x କୁ x+5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+5x=126
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}+5x-126=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 126 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-5±\sqrt{5^{2}-4\left(-126\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 5, ଏବଂ c ପାଇଁ -126 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-5±\sqrt{25-4\left(-126\right)}}{2}
ବର୍ଗ 5.
x=\frac{-5±\sqrt{25+504}}{2}
-4 କୁ -126 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-5±\sqrt{529}}{2}
25 କୁ 504 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-5±23}{2}
529 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{18}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±23}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -5 କୁ 23 ସହ ଯୋଡନ୍ତୁ.
x=9
18 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{28}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-5±23}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -5 ରୁ 23 ବିୟୋଗ କରନ୍ତୁ.
x=-14
-28 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=9 x=-14
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6\times 21=x\left(x+5\right)
21 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 15 ଯୋଗ କରନ୍ତୁ.
126=x\left(x+5\right)
126 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 21 ଗୁଣନ କରନ୍ତୁ.
126=x^{2}+5x
x କୁ x+5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+5x=126
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=126+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 5 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+5x+\frac{25}{4}=126+\frac{25}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{5}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+5x+\frac{25}{4}=\frac{529}{4}
126 କୁ \frac{25}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{5}{2}\right)^{2}=\frac{529}{4}
ଗୁଣନୀୟକ x^{2}+5x+\frac{25}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{529}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{5}{2}=\frac{23}{2} x+\frac{5}{2}=-\frac{23}{2}
ସରଳୀକୃତ କରିବା.
x=9 x=-14
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{2} ବିୟୋଗ କରନ୍ତୁ.