ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
6x+30+6x=x\left(x+5\right)
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -5,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6x\left(x+5\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x,x+5,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
12x+30=x\left(x+5\right)
12x ପାଇବାକୁ 6x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
12x+30=x^{2}+5x
x କୁ x+5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
12x+30-x^{2}=5x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
12x+30-x^{2}-5x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5x ବିୟୋଗ କରନ୍ତୁ.
7x+30-x^{2}=0
7x ପାଇବାକୁ 12x ଏବଂ -5x ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+7x+30=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=7 ab=-30=-30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -x^{2}+ax+bx+30 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,30 -2,15 -3,10 -5,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -30 ପ୍ରଦାନ କରିଥାଏ.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=10 b=-3
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 7 ପ୍ରଦାନ କରିଥାଏ.
\left(-x^{2}+10x\right)+\left(-3x+30\right)
\left(-x^{2}+10x\right)+\left(-3x+30\right) ଭାବରେ -x^{2}+7x+30 ପୁନଃ ଲେଖନ୍ତୁ.
-x\left(x-10\right)-3\left(x-10\right)
ପ୍ରଥମଟିରେ -x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -3 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-10\right)\left(-x-3\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-10 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=10 x=-3
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-10=0 ଏବଂ -x-3=0 ସମାଧାନ କରନ୍ତୁ.
\frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
6x+30+6x=x\left(x+5\right)
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -5,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6x\left(x+5\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x,x+5,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
12x+30=x\left(x+5\right)
12x ପାଇବାକୁ 6x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
12x+30=x^{2}+5x
x କୁ x+5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
12x+30-x^{2}=5x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
12x+30-x^{2}-5x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5x ବିୟୋଗ କରନ୍ତୁ.
7x+30-x^{2}=0
7x ପାଇବାକୁ 12x ଏବଂ -5x ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+7x+30=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\times 30}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 7, ଏବଂ c ପାଇଁ 30 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49-4\left(-1\right)\times 30}}{2\left(-1\right)}
ବର୍ଗ 7.
x=\frac{-7±\sqrt{49+4\times 30}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{49+120}}{2\left(-1\right)}
4 କୁ 30 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-7±\sqrt{169}}{2\left(-1\right)}
49 କୁ 120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-7±13}{2\left(-1\right)}
169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-7±13}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{6}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±13}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -7 କୁ 13 ସହ ଯୋଡନ୍ତୁ.
x=-3
6 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{20}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-7±13}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -7 ରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
x=10
-20 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-3 x=10
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
6x+30+6x=x\left(x+5\right)
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -5,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6x\left(x+5\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x,x+5,6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
12x+30=x\left(x+5\right)
12x ପାଇବାକୁ 6x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
12x+30=x^{2}+5x
x କୁ x+5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
12x+30-x^{2}=5x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
12x+30-x^{2}-5x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5x ବିୟୋଗ କରନ୍ତୁ.
7x+30-x^{2}=0
7x ପାଇବାକୁ 12x ଏବଂ -5x ସମ୍ମେଳନ କରନ୍ତୁ.
7x-x^{2}=-30
ଉଭୟ ପାର୍ଶ୍ୱରୁ 30 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-x^{2}+7x=-30
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+7x}{-1}=-\frac{30}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{-1}x=-\frac{30}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-7x=-\frac{30}{-1}
7 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-7x=30
-30 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=30+\left(-\frac{7}{2}\right)^{2}
-\frac{7}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -7 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{7}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-7x+\frac{49}{4}=30+\frac{49}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{7}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-7x+\frac{49}{4}=\frac{169}{4}
30 କୁ \frac{49}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{7}{2}\right)^{2}=\frac{169}{4}
ଗୁଣନୀୟକ x^{2}-7x+\frac{49}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{169}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{7}{2}=\frac{13}{2} x-\frac{7}{2}=-\frac{13}{2}
ସରଳୀକୃତ କରିବା.
x=10 x=-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{2} ଯୋଡନ୍ତୁ.