x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-\frac{2}{3}\approx -0.666666667
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
a+b=-5 ab=6\left(-6\right)=-36
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 6x^{2}+ax+bx-6 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,-36 2,-18 3,-12 4,-9 6,-6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଋଣାତ୍ମକ ଅଟେ, ଋଣାତ୍ମକ ସଂଖ୍ୟା ଧନାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -36 ପ୍ରଦାନ କରିଥାଏ.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-9 b=4
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି -5 ପ୍ରଦାନ କରିଥାଏ.
\left(6x^{2}-9x\right)+\left(4x-6\right)
\left(6x^{2}-9x\right)+\left(4x-6\right) ଭାବରେ 6x^{2}-5x-6 ପୁନଃ ଲେଖନ୍ତୁ.
3x\left(2x-3\right)+2\left(2x-3\right)
ପ୍ରଥମଟିରେ 3x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 2 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(2x-3\right)\left(3x+2\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ 2x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=\frac{3}{2} x=-\frac{2}{3}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, 2x-3=0 ଏବଂ 3x+2=0 ସମାଧାନ କରନ୍ତୁ.
6x^{2}-5x-6=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 6, b ପାଇଁ -5, ଏବଂ c ପାଇଁ -6 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
ବର୍ଗ -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-6\right)}}{2\times 6}
-4 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 6}
-24 କୁ -6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 6}
25 କୁ 144 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-5\right)±13}{2\times 6}
169 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{5±13}{2\times 6}
-5 ର ବିପରୀତ ହେଉଛି 5.
x=\frac{5±13}{12}
2 କୁ 6 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{18}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±13}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 5 କୁ 13 ସହ ଯୋଡନ୍ତୁ.
x=\frac{3}{2}
6 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{18}{12} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{8}{12}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{5±13}{12} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 5 ରୁ 13 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{2}{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-8}{12} ହ୍ରାସ କରନ୍ତୁ.
x=\frac{3}{2} x=-\frac{2}{3}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6x^{2}-5x-6=0
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
6x^{2}-5x-6-\left(-6\right)=-\left(-6\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 6 ଯୋଡନ୍ତୁ.
6x^{2}-5x=-\left(-6\right)
ସଂପୃକ୍ତ ସଂଖ୍ୟାରୁ ସେହି -6 ବିୟୋଗ କରିବାରେ 0 ମିଳିଥାଏ.
6x^{2}-5x=6
0 ରୁ -6 ବିୟୋଗ କରନ୍ତୁ.
\frac{6x^{2}-5x}{6}=\frac{6}{6}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{5}{6}x=\frac{6}{6}
6 ଦ୍ୱାରା ବିଭାଜନ କରିବା 6 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{5}{6}x=1
6 କୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=1+\left(-\frac{5}{12}\right)^{2}
-\frac{5}{12} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{5}{6} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{5}{12} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{5}{12} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
1 କୁ \frac{25}{144} ସହ ଯୋଡନ୍ତୁ.
\left(x-\frac{5}{12}\right)^{2}=\frac{169}{144}
ଗୁଣନୀୟକ x^{2}-\frac{5}{6}x+\frac{25}{144}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{5}{12}=\frac{13}{12} x-\frac{5}{12}=-\frac{13}{12}
ସରଳୀକୃତ କରିବା.
x=\frac{3}{2} x=-\frac{2}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{5}{12} ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}