ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

6x^{2}+2x-50=2x^{2}+106
2x ପାଇବାକୁ 3x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}+2x-50-2x^{2}=106
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+2x-50=106
4x^{2} ପାଇବାକୁ 6x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}+2x-50-106=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 106 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+2x-156=0
-156 ପ୍ରାପ୍ତ କରିବାକୁ -50 ଏବଂ 106 ବିୟୋଗ କରନ୍ତୁ.
2x^{2}+x-78=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a+b=1 ab=2\left(-78\right)=-156
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ 2x^{2}+ax+bx-78 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,156 -2,78 -3,52 -4,39 -6,26 -12,13
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -156 ପ୍ରଦାନ କରିଥାଏ.
-1+156=155 -2+78=76 -3+52=49 -4+39=35 -6+26=20 -12+13=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-12 b=13
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 1 ପ୍ରଦାନ କରିଥାଏ.
\left(2x^{2}-12x\right)+\left(13x-78\right)
\left(2x^{2}-12x\right)+\left(13x-78\right) ଭାବରେ 2x^{2}+x-78 ପୁନଃ ଲେଖନ୍ତୁ.
2x\left(x-6\right)+13\left(x-6\right)
ପ୍ରଥମଟିରେ 2x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 13 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-6\right)\left(2x+13\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-6 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=6 x=-\frac{13}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-6=0 ଏବଂ 2x+13=0 ସମାଧାନ କରନ୍ତୁ.
6x^{2}+2x-50=2x^{2}+106
2x ପାଇବାକୁ 3x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}+2x-50-2x^{2}=106
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+2x-50=106
4x^{2} ପାଇବାକୁ 6x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}+2x-50-106=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 106 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+2x-156=0
-156 ପ୍ରାପ୍ତ କରିବାକୁ -50 ଏବଂ 106 ବିୟୋଗ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-156\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 2, ଏବଂ c ପାଇଁ -156 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4-4\times 4\left(-156\right)}}{2\times 4}
ବର୍ଗ 2.
x=\frac{-2±\sqrt{4-16\left(-156\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{4+2496}}{2\times 4}
-16 କୁ -156 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-2±\sqrt{2500}}{2\times 4}
4 କୁ 2496 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-2±50}{2\times 4}
2500 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-2±50}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{48}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±50}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -2 କୁ 50 ସହ ଯୋଡନ୍ତୁ.
x=6
48 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{52}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-2±50}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -2 ରୁ 50 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{13}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-52}{8} ହ୍ରାସ କରନ୍ତୁ.
x=6 x=-\frac{13}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6x^{2}+2x-50=2x^{2}+106
2x ପାଇବାକୁ 3x ଏବଂ -x ସମ୍ମେଳନ କରନ୍ତୁ.
6x^{2}+2x-50-2x^{2}=106
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+2x-50=106
4x^{2} ପାଇବାକୁ 6x^{2} ଏବଂ -2x^{2} ସମ୍ମେଳନ କରନ୍ତୁ.
4x^{2}+2x=106+50
ଉଭୟ ପାର୍ଶ୍ଵକୁ 50 ଯୋଡନ୍ତୁ.
4x^{2}+2x=156
156 ପ୍ରାପ୍ତ କରିବାକୁ 106 ଏବଂ 50 ଯୋଗ କରନ୍ତୁ.
\frac{4x^{2}+2x}{4}=\frac{156}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{2}{4}x=\frac{156}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{1}{2}x=\frac{156}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{1}{2}x=39
156 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=39+\left(\frac{1}{4}\right)^{2}
\frac{1}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{1}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=39+\frac{1}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{625}{16}
39 କୁ \frac{1}{16} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{1}{4}\right)^{2}=\frac{625}{16}
ଗୁଣନୀୟକ x^{2}+\frac{1}{2}x+\frac{1}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{625}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{4}=\frac{25}{4} x+\frac{1}{4}=-\frac{25}{4}
ସରଳୀକୃତ କରିବା.
x=6 x=-\frac{13}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{4} ବିୟୋଗ କରନ୍ତୁ.